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Abstract
This review assesses the leachate quality from waste disposal sites in tropical climate zone. Through this review, data from 
228 leachate samples from 145 waste disposal sites from 18 countries in the tropical region were analyzed. The 12 types of 
sites were considered for the analysis based on the climatic conditions, age, and the operating condition of the site. Tropi-
cal rainforest, tropical monsoon, and tropical savanna climates were identified for the climatic zone classification. Age of 
site was classified as young and old. The operating conditions were classified as engineered landfill and open dump site. 
Eighteen leachate quality parameters were included in the analysis. Leachate pollution index indicated that young sites from 
tropical rainforest zone and tropical monsoon zone have higher pollution potential, while the pollution potential in tropical 
savanna zone did not demonstrate considerable difference in pollution potential in terms of age of the landfill. Considering 
the operating method of the sites, open dumpsites pose higher pollution potential. Positive correlation could be seen among 
biological oxygen demand, chemical oxygen demand, total dissolved solids, and total Kjeldahl nitrogen. pH negatively 
correlated with organic pollutants as well as heavy metals. Analysis of emerging contaminants present in landfill leachate 
is limited in tropical region; thus, it is recommended to conduct studies on emerging contaminants. Further, the leachate 
treatment options considered in tropical region are discussed in this review.
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Introduction

Background

A landfill is an engineered method commonly used for the 
systematic disposal of municipal solid waste (MSW) and 
hazardous waste safely. In most of the developing countries, 
a primary stage of landfilling in the form of open dump-
ing is used to dispose solid waste [1]. Landfill leachate, gas 
emissions, slope stability, and odor control are identified as 
concerns of designing and operating a landfill [2••].

Idris et  al. [3•], Hoornweg and Bhada-Tata [4], and 
Rajoo, et al. [5•] classified landfilling sites as open dumps 
and engineered landfills. Idowu et al. [6] also used similar 
classification system. The sites where there is no environ-
mental protection and control are classified as open dumps. 
Engineered landfills are characterized with proper location 
and design, compaction of waste, use of daily cover and 
leachate, and gas and odor control systems. The engineered 
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landfills are equipped with onsite leachate treatment and 
post-closure management plan.

MSW in landfills undergo complex degradation by 
means of chemical, physical, and biological processes. The 
percolation of rainwater through waste results in leaching 
of degraded matter [7•]. Landfill leachate is the main by-
product of the MSW degradation process [8]. Thus, “land-
fill leachate is defined as the liquid effluent generated from 
rainwater percolation through solid waste disposed of in a 
landfill, as well as the moisture present in the waste and the 
degradation products of residues” [9••]. The leachate quan-
tity is mainly determined by precipitation, evapotranspira-
tion, surface runoff, groundwater infiltration, and the degree 
of compaction within landfill [10••].

Leachate comprise of four types of pollutants: dissolved 
organic matter (organic carbon, fatty acids), inorganic com-
pounds (chlorides, ammonium, phosphates, nitrates), heavy 
metals (copper, zinc, lead, mercury), and xenobiotic organic 
compounds (XOCs) (benzene, phenols, phthalates) [11•, 
12]. In recent studies, landfill leachate is identified as one of 
the main sources of emerging contaminants (EC). As land-
fills become the most common disposal practice for MSW, 
landfills receive EC of different origins [13••].

The leachate composition mainly depends on the age of 
the landfill, solid waste composition, climatic conditions, 
temperature, hydrological conditions, and landfill operation 
practices [7•, 14•, 15••, 16, 17•]. The literature reviews 
currently available on landfill leachate can be classified as 
reviews on leachate characteristics [18••], reviews on fac-
tors influencing leachate characteristics [15••], reviews on 
leachate treatment methods [19, 20•], and combination of 
these topics [21•, 22••]. These reviews take into account 
leachate from disposal sites all over the world. Studies on 
leachate have mostly considered countries like China [23•], 
the USA, and European countries which are located in the 
temperate region [22••]; thus, data from temperate region 

was analyzed. Studies that focused on leachate from tropical 
landfills and dumpsites are limited.

Considering the lack of reviews on tropical leachate, the 
objectives of this review focus on the variations of the land-
fill leachate characteristics with the age, climatic conditions, 
and landfill operating practices in tropical region. Leachate 
pollution index for the sites investigated was calculated 
using the data available in the literature, and the correlation 
between leachate characteristics was analyzed. Understand-
ing the composition of leachate is essential for predicting the 
long-term effects of landfills. It allows for proposing alterna-
tive treatment methods for leachate from tropical landfills.

Types of Sites

The literature search concentrated on landfills and dumpsites 
in tropical climates to achieve the aims of the study. Studies 
published in databases such as Scopus and Science Direst 
were used, and published data from 228 leachate samples 
from 145 landfills and dumpsites in the tropical region were 
analyzed. The locations of countries from which these sam-
ples were taken are shown in Fig. 1. The types and further 
details on sites are given in the "Data Collection".

Temperature and precipitation have shown significant 
effect on leachate production; therefore, data were initially 
classified based on them. To categorize the locations into 
climatic zones, the Köppen-Geiger climate classification 
method was used, which is the most widely used method 
[24]. The Köppen climate classification categorizes climates 
into five major categories, with each category subdivided 
depending on seasonal precipitation and temperature trends: 
A (tropical), B (dry), C (temperate), D (continental), and E 
(polar). Tropical climatic condition is characterized by aver-
age temperature above 18 °C and considerably high annual 
rainfall. This tropical climatic region is further subdivided 
into three subcategories, tropical rainforest climate (AF), 

Fig. 1  Locations for leachate 
samples: (1) Belize (9 samples), 
(2) Colombia (2 samples), (3) 
Brazil (15 samples), (4) Ivory 
Coast (1 sample), (5) Nigeria 
(41 samples), (6) Ghana (11 
samples), (7) Cameroon (1 sam-
ple), (8) Ethiopia (9 samples), 
(9) India (29 samples), (10) Sri 
Lanka (20 samples), (11) Thai-
land (2 samples), (12) Indonesia 
(8 samples), (13) Laos (2 sam-
ples), (14) Cambodia (2 sam-
ples), (15) Vietnam (8 samples), 
(16) Malaysia (60 samples), 
(17) Philippines (2 samples), 
(18) Taiwan (4 Samples)
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tropical monsoon climate (AM), and tropical savanna cli-
mate (AW), based on average monthly rainfall [24–26].

Types of Sites

The locations investigated are classified according to (i) the 
climatic zone in which they are located, (ii) the mode of oper-
ation of the site, and (iii) the age of the site, which were taken 
into account for sites analysis. Figure 2a shows the number of 
samples from open dumps sites (OD) and engineered landfills 
(LF) that are in operation in various climatic zones that were 
considered in this review. More LF than OD are in operation 
in the AF zone. This tendency has reversed in the drier AW 
zone, where there are more OD and fewer LFs. Figure 2b 
demonstrates that the majority of the sites investigated in 
tropical region are older than ten years, whereas the number 
of studies on young and intermediate sites is significantly 
lower.

A landfill, during its life time, passes through four phases; 
aerobic phase, acetogenic phase, methanogenic phase, and 
stabilization phase [27••]. During these periods, charac-
teristics of leachate such as pH,  BOD5, COD,  NH4

+-N, 
heavy metal concentration, and biodegradability vary and 
considering the ranges of values of these parameters, lea-
chate is classified into stages as young leachate (age below 
5 years), intermediate leachate (age between 5 and 10 years), 
and old leachate (age over 10 years). Table A.1 shows the 
general ranges of values reported for the parameters during 
the different stages of leachate. The high BOD/COD ratio 
(more than 0.5) of leachate produced in young landfills is 

an indicator of leachate biodegradability. As amino acids 
are released during the degradation of organic molecules, 
they are present in young landfill leachate. Leachate from 
old landfills is high in ammonia nitrogen because the nitrog-
enous fraction of biodegradable substrates is hydrolyzed and 
fermented. The change in organics and ammonia nitrogen 
over time could have a big impact on leachate treatment. 
Leachate comprises a variety of toxins that is harmful to life 
and affects the ecosystem, regardless of landfill age. Due to 
its high nutritional content, it can accelerate algal growth, 
reduce dissolved oxygen in the receiving water, and have a 
harmful effect on aquatic life [7•].

Considering the distribution of the sites, for the analysis of 
data, the sites are categorized based on three climatic zones, 
AF, AM, and AW, mode of operation as LF and OD, and the 
age of site as less than ten (Y) and greater than ten (O). Thus, 
for the purpose of analysis, the sites under consideration are 
categorized into 12 groups as shown in Table A.2. The num-
ber of samples from open dumpsites of young age was low as 
the solid waste management is moving from open dumpsites 
to sanitary landfills. Most of the young disposal facilities can 
be categorized as sanitary landfills.

Leachate Characteristics

Organic Parameters

Observing the Boxplot diagrams in Fig. 3a and b, it can be 
seen that both the  BOD5 and COD values follow a similar 

Fig. 2  Number of sites consid-
ered for the analysis a according 
to mode of operation and b 
according to age of the site, 
with climatic zone

AF AM AW --
0

5

10

15

20

25

30

35

40

45

50

55

60
 ODS
 LF

N
um

be
r 

of
 s

ite
s

Climatic Zone

(a) (b)

AF AM AW --
0

5

10

15

20

25

30

35

40

45

50

55

60
 <5
 5  -  10
 >10

N
um

be
r 

of
 s

ite
s

Climatic Zone

275Current Pollution Reports (2022) 8:273–287



1 3

trend in all the climatic zones considered. Both  BOD5 and 
COD values are distributed over a wide range in AM com-
pared to the other two zones. The mean  BOD5 values were 
2435.16 mg/L, 3455.77 mg/L, and 2127.79 mg/L in AF, 
AM, and AW zones, respectively. The mean COD values 
were 7985.1  mg/L, 6185.17  mg/L, and 7504.32  mg/L, 
respectively. There is no particular trend in the  BOD5 value 
or COD value across the climatic conditions analyzed. 
However, Table A.3 shows that the  BOD5 values of old 
engineered landfills are relatively smaller with values of 
159 mg/L in AM/LF/O and 531 mg/L in AF/LF/O. The COD 
values also show the same trend by giving lowest COD value 
in old engineered landfills with 1813 mg/L and 2712 mg/L 
in AM/LF/O and AF/LF/O respectively. These low  BOD5 

and COD values of old landfill sites attribute to the degrada-
tion of organics over the time. The  BOD5 and COD values 
of open dumps have not reduced to an extent as those from 
landfills with the age owing to the fact that open dumps con-
tinues to receive waste continuously releasing new leachate.

Table A.3 shows that the BOD/COD ratios of the young 
leachates are higher than the old leachates in each zone. The 
proportions of biodegradable organics in leachate are repre-
sented by the BOD/COD ratio. Due to the quick decompo-
sition of biodegradable waste, BOD concentrations decline 
in higher rate than COD with time. As a result, the BOD/
COD ratio is used to determine the age of landfills. BOD/
COD ratios of leachate from new waste disposal facilities 
(WDFs) are in range of 0.5–1.0, and those from old leachates 
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Fig. 3  Variation of organic characteristics in different tropical climates (AF, tropical rainforest climate; AM, tropical monsoon climate; AW 
tropical savanna climate)
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are less than 0.1 [27••]. Due to their complicated molecular 
architectures, XOCs present in landfill leachate are typically 
difficult to extract using traditional leachate treatment systems 
[28]. Even when present in low concentrations, XOCs are haz-
ardous to the ecology and natural environment, and they are 
rarely regulated. Among them, phenolic compounds (Ph.Cs) 
are commonly found in landfill leachate [29]. However, their 
presence has been rarely measured in the studies conducted in 
the tropical region. Out of the available data from the zone, by 
observing Fig. 3d, it can be seen that XOCs values are ranging 
from 0 to 6 mg/L in AF, 1 to 3 in AM and 0.95 in AW. Under 
aerobic conditions, Ph.Cs degrade rapidly, whereas under 
anaerobic conditions, the degradation is ambiguous [30, 31•, 
32••]. As a result, low Ph.Cs concentrations are attributed to 
aeration at WDFs. It has been discovered that aeration has a 
significant effect on increase of the decomposition of hazard-
ous compounds such as phenols [5•].

Inorganic Parameters

Young landfill leachate showed a pH of less than 6.5, 
whereas old landfill leachate showed a pH higher than 7.5. 
It was also reported that leachates with high concentration 
of volatile fatty acids(VFAs) have low pH [33]. The pH of 
stabilized leachate is ranging between 7.5 and 9 [34]. Dur-
ing the anaerobic degradation of the wastes, the pH of lea-
chate becomes alkaline due to the decrease in the concentra-
tion of partially ionized free volatile fatty acids which are 
being used up by the methane producing bacteria [35••]. 
Furthermore, pH of leachate tends to increase gradually 
with time from slightly acidic towards alkaline values as 
the site gets older and more stabilized. Figure 4a shows that 
pH of zone AM is within larger range that of zones AF and 
AW. Table A.3 illustrates that the average pH of all types of 
sites are above 7 apart from AM/OD/O where it is 6.7. This 
observation is contradicting to the fact that young leachate 
has pH below 6.5 due to presence of higher concentrations 
of volatile fatty acids. The higher pH values in relatively 
younger WDF indicate the short acidic phase and early 
methanogenic phase. The higher temperature that tropical 
landfills and dumpsites exposed compared to the sites from 
cold regions causes accelerated bacterial growth and chemi-
cal reaction rates resulting in early methanogenic phase.

The majority of total nitrogen is made up of ammonium. In 
comparison to soluble organics, the release of soluble nitrogen 
from waste into leachate occurs over a longer period of time 
[31•]. The amount of ammonia nitrogen, a common element 
of landfill leachate due to biological breakdown of amino 
acids and other organic nitrogenous materials, is measured in 
 NH4

+-N. The sum of organic nitrogen and ammonia nitrogen 
is known as total Kjeldahl nitrogen (TKN).  NH4

+-N appears 
to be the element which exists the longest in leachate due to 
the stability in anaerobic conditions, and it is thus utilized 

to estimate landfill contamination potential. Higher levels of 
 NH4

+-N have also been linked to eutrophication and a reduc-
tion in dissolved oxygen.

Figure 4b shows that zone AM has ammonia values 
over a wider range than AF and AW. Table A.3 depicts that 
ammonia concentrations in younger landfills are higher 
than those of older landfills. Data from young landfills and 
dumpsites from AF and AM zones showed higher aver-
age ammonia concentrations than old sites. However, in 
AW zone, this trend is seen only in engineered landfills, 
whereas old leachate from open dump sites from AW had 
higher ammonia concentrations (716 mg/L) than younger 
leachate from same zone (14 mg/L). This variation could 
be due to low data availability. Only four  NH4

+-N meas-
urements were available for the old open dump sites out 
of 13 sites considered for the category.

Inorganic salts and dissolved organics make up the major-
ity of TDS. The quantity of TDS represents the degree of 
mineralization, and a higher TDS concentration might alter 
the receiving water’s physical and chemical properties. By 
altering the ionic composition of water, a rise in salinity 
owing to an increase in TDS concentration also increases 
toxicity. Similar to those of ammonia, TDS is scattered over 
a wide range in AM that AF and AW (Fig. 4c). Table A.3 
shows that TDS values of old leachate from both landfills 
and open dump sites from AM have lower TDS values of 
7400 mg/L and 3015 mg/L respectively. Those of young 
leachate from landfills and open dump sites in AM have high 
TDS of 14490 mg/L and 17850 mg/L respectively. TDS lev-
els represent the degree of mineralization. As the acidity of 
the landfill decreases, the dissolving of ions decreases. As a 
result of this, TDS decreases with age [31•].

Chloride  (Cl−) in leachate is extremely mobile, inert, and 
non-biodegradable under all conditions. As a result, it can be 
employed as a powerful indicator of pollution as well as a lea-
chate plume tracer element [32••, 36••]. High levels of chlo-
rides in leachate can be caused by the presence of considerable 
volumes of soluble salts from probable anthropogenic sources 
like kitchen waste from residences, restaurants, and hotels 
[32••]. Figure 4d shows the average  Cl−concentration in AF, 
AM, and AW to be 2290 mg/L, 3235 mg/L, and 2220 mg/L 
respectively. The highest average concentration of chloride 
can be observed from AM/LF/Y as 4338 mg/L (Table A.3). 
Lowest average of chloride concentration is reported from AF 
zone with values 1453 mg/L from old leachate from landfills. 
The high  Cl− content of leachate is most likely due to pollu-
tion sources such as domestic effluents, fertilizers, and septic 
tanks, as well as natural sources such as rainfall [37].

Heavy Metals

Heavy metal concentrations in landfill leachate are on aver-
age rather modest. Heavy metal concentrations in landfills 
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are usually greater in the early phases due to higher metal 
solubility as a result of low pH induced by organic acid gen-
eration [38]. Because of the pH rise in later stages, metal 
solubility decreases, causing a quick drop in heavy metal 
concentrations, with the exception of lead, which forms a 
highly heavy complex with humic acids [39].

The presence of iron (Fe) is usually due to the dumping of 
metal waste and tin-based waste, among other heavy metals. 
Figure 5a shows Fe concentrations in the different climatic 
regions considered. The average concentrations of Fe in AF, 
AM, and AW zones are 35, 39, and 18 mg/L, respectively. 
Considering the age and type of WDF, high concentra-
tions of Fe are reported for AF/LF/Y (57.22 mg/L), AF/
OD/O (40.15 mg/L), AM/LF/Y (33.31 mg/L), AM/OD/O 
(43.25 mg/L), and AW/LF/Y (20.43 mg/L). The trend in 
Fe concentrations for AF/LF/O (7.18 mg/L), AM/LF/O 

(6.75 mg/L), and AW/LF/O (5.87 mg/L) indicate that old 
leachate from engineered landfills have lower Fe concentra-
tions owing to the fact that with age, heavy metal dissolution 
reduce.

All the types of sites analyzed have similar trend when 
it comes to presence of copper (Cu) (Fig. 5b). Figure 5e 
shows that lead (Pb) also follows similar trend to Cu in all 
the three climatic regions. By observing Table A.3, it can 
be seen that the values also fall in a similar range for both. 
However, the concentration of mickel (Ni) in old leachate 
from both engineered landfills and open dump sites from 
AM zone reported were extremely of high values of 66 mg/L 
and 27 mg/L, respectively, whereas the Ni concentration is 
below 1 mg/L in all the other cases studied. The disposal of 
Ni containing batteries is identified as the source for Ni in 
landfill leachate [32••].
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Both Fig. 5d and the Table A.3 show that Zn concentra-
tion in leachate from AW is higher than the Zn concentra-
tion from AF and AM with highest average concentration 
reported from OD with values 2.86 and 2.80 mg/L from 
young and old leachate respectively. The Zn concentration is 
lowest from AF/LF/Y (0.2 mg/L). Zn might have originated 
from batteries and fluorescent lamps dumped in landfills. 
Paint solvents and preservatives for wood cause chromium 
(Cr) to present in landfill leachate [32••].

Data on arsenic (As) and mercury (Hg) are limited for 
tropical landfills and open dump sites. Figure 5g and h show 
that the average concentrations are below 1 mg/L. As results 
from the electronic waste such as computer chips, circuit 
boards, liquid crystal displays, and fertilizers.. Hg in landfill 
leachate comes from fluorescent and other lights, batteries, 
electrical switches and relays, barometers, and thermom-
eters, among other things.

Correlation Between Parameters

This section discusses the correlation between leachate 
quality parameters obtained using statistical analysis using 
Microsoft Excel by using the formula given by Eq. (1):

where r is the correlation coefficient, xi is the value of the 
x variable in a sample, x is the mean of the values of the x 
variable, x is the value of the yi variable in a sample, and y 
is the mean of the values of the y variable.

A preliminary descriptive technique for evaluating the 
degree of correlation and understanding the link between 
the variables involved is correlation analysis. The correla-
tion matrix for the eighteen leachate parameters is shown 
in Table A.4. Some of these indicators have a statistically 
significant correlation, indicating that they are linked.

The concentrations of  BOD5 and COD in the leachate 
showed a strong positive correlation among them with corre-
lation coefficient of 0.81, which is typical being indicators of 
organic pollutants.  BOD5 and COD showed positive correlation 
with TKN as well, where the correlation coefficients are 0.76 
and 0.72, respectively. The positive correlation among BOD 
and COD with As is another important finding by the analysis.

Phenolic compounds have positive correlation with heavy 
metals and TDS. The correlation coefficient between TDS 
and Ph.C. is 0.69, and the coefficient between Hg and Ph.C. 
is 0.9. High positive correlation with coefficient 0.86 was 
found between TC and AS as well. The positive correlation 
between TKN and  NH4

+-N is obvious as  NH4
+-N is included 

within TKN. Further, high positive correlation was observed 

(1)r =

∑

(xi − x)(yi − y)
�

∑

(xi − x)
2
∑

(yi − y)
2

between TDS and TKN,  Cl−, and Fe also with coefficient 
being 0.56, 0.72, and 0.52, respectively.

Another significant finding from the correlation analysis 
is correlation that is shown by pH with most of the other 
considered parameters. pH, for example, has a negative 
correlation with organic indicators. The correlation with 
parameters such as BOD (−0.43), and COD (−0.32) were 
negative. Similarly, numerous heavy metals, such as Cu, Ni, 
Zn, Cr, As, and CN, were negatively correlated with pH. 
This reveals a strong link between the pH of the leachate 
and the concentration of heavy metals. As pH levels drop, 
the solubility of certain metals increases. The influence of 
pH on heavy metals mobility in leachate is clear. Accord-
ing to Tałałaj et al. [27••], a rise in pH produces a drop in 
concentrations of Hg, Pb, and Cd. TC also shows a negative 
correlation with most of the other parameters considered.

Presence of Emerging Contaminates in Landfill 
Leachate in Tropical Countries

Emerging contaminants (ECs) are compounds that have 
recently been shown to occur widely in the environment and 
have been identified as posing a potential environmental or 
public health risk, but there is insufficient data to assess 
their risk [13••]. Although wastewater has been extensively 
studied as the primary source of EC in the environment, lit-
tle attention has been paid to landfill leachate as a potential 
source of these compounds [40]. Studies that assessed (or 
reported) the presence of ECs in landfill leachate are lim-
ited [13••, 23•, 41•, 42•] especially in the context of tropi-
cal countries; a study on EC in landfill leachate is rare. Yi 
et al. [43] presented the first information on the presence of 
selected ECs in raw leachate from a 16-year-old Singapore 
closed landfill site. Therefore, the emerging contaminates 
that have been studied outside the tropical zone are also used 
here.

Emerging contaminants found in landfill leachate can be 
identified under poly-fluorinated compounds (PFC), phar-
maceuticals and personal care products (PPCP), aliphatic 
alcohols and ethers, aldehydes and ketones, aliphatic acids 
and esters, aromatic carboxylic acids and ethers, alkanes and 
cycloalkanes, benzthiazoles, benzene derivatives, drugs and 
metabolites, non-steroidal anti-inflammatory drugs, pesti-
cides, phthalic acid esters, phosphoric acid derivatives, 
phenolic compounds, sulfur containing compounds, sul-
fonamides, and terpenoids [44•].

Over the last few decades, high concentrations of EC have 
been widely reported in various landfill leachates [23•, 44•]. 
For example, Clarke et al. [45] examined ten EOCs (e.g., car-
bamazepine, fluoxetine) in landfill leachates collected from 
five MSW landfills in the USA. They discovered that the con-
centrations were in the range of 6.9–143 g/L. In Singapore, 
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raw leachates from a 15-year-old closed landfill contained 15 
PPCPs and EDCs at concentrations of up to 474 µg/L [43].

Due to lack of data on EC from tropical region, further 
analysis is not performed on EC.

Leachate Pollution Index (LPI)

LPI combines different physical, chemical, and biological 
leachate parameters to get an indicative value [32••, 46]. 
Based on number of leachate parameters, an indicative value 
in range of 5 to 100 is obtained using weights (wi) and sub-
indices (pi). LPI is a useful tool for assessing the contamina-
tion potential of various landfill sites at any given time [47].

LPI was utilized by Munir et al. [48] to aid WDF man-
agers and decision-makers in identifying the level to which 
leachate poses an environmental danger. In addition, LPI is 
utilized to trace changes in landfill leachate pollution over 
time. LPI-identified leachate contamination patterns can help 
enhance treatment plant design and allow post-closure moni-
toring in comparable situations [46]. Abunama et al. [32••] 
utilized the LPI to compare the leachate polluting potentials 
of various landfills across the world. Other possible LPI uses 
include rating landfills based on their propensity for leachate 
pollution; facilitating resource allocation for landfill cleanup; 
and improving more stringent leachate standards, research 
and development, and public awareness [32••].

Kumar and Alappat [49••] evaluated and compared many 
aggregation functions focusing to obtain best formula for 
expressing LPI. The LPI estimation includes finding the sub-
index scores (pi) for all of the leachate parameters based on 
their concentrations using the sub-index score figures [36••].

The LPI is calculated according to Eq. (2) as follows:

wherewi is the weight for the  ith pollutant pi is the sub-index 
value of the  ith leachate pollutant variable, and m is the 
number of leachate pollutant variables used in calculating 
LPI.

However, if leachate parameters are unavailable, the LPI may 
be approximated using the known values, as shown in Eq. (3):

There are primary eighteen leachate pollutant metrics that 
make up the total LPI. Each of these characteristics was given 
a weight (wi) considering the extent of importance of a pol-
lutant. These represent the relative relevance of each pollut-
ant parameter on the total polluting potential of the leachate. 
Used parameters and the respective weightages are given in 
Table A.5. The sub-index (pi) curves from [36••] were used 
to determine the connection between pi values and matching 

(2)LPI =
∑m

i=1
wipi

(3)LPI =

∑m

i=1
wipi

∑m

i=1
wi

concentrations. The pi curves for the 18 leachates were dis-
covered in Kumar and Alappat, and they varied from 5 to 
100. The LPI estimation requires estimating the pi for all of 
the leachate parameters based on their concentrations using 
the sub-index score numbers. [36••].

Figure 6 illustrates the leachate contamination potential in 
terms of LPI for the categories identified in this study. Con-
sidering the overall figures, the AM/LF/Y has the highest 
LPI of 35.2. The lowest LPI resulted from AW/OD/Y with 
value of 15.76. Comparing the LPI based on the climatic 
zones, leachate from AM zone has higher pollution poten-
tial. The LPI of AW and AF are lower compared to the AM.

In comparison, the LPI in AF and AM, the open dump sites 
show higher LPI than engineered landfills. This is obvious as 
the engineered landfills takes better precautions to reduce the 
possible pollution from leachate to the environment. The find-
ings of Vaccari et al. [18••] agree with the LPI trends in open 
dump sites and engineered landfills from AF and AM where 
they have stated that the leachate pollution potential of the open 
dump sites are higher than that of engineered landfills. However, 
this is not the case in AW zone. In the AW zone, the average LPI 
from engineered landfills is greater than that of open dumpsites. 
Abunama et al. [32••] have also come across with such trend for 
LPI from open dump sites and engineered landfills and state that 
it is due to the fact that leachate from open dumpsites get diluted 
which can result in reduction of the overall pollution potential. 
Similar to the trend observed for the type of landfill facility con-
sidered, the LPI for young leachate is higher in both the AF and 
AM in both open dump sites and engineered landfills. This is in 
agreement with the fact that the age has an effect on pollution 
potential of the leachate. The degradation of waste matter over 
the time causes lower strengths of leachate during older ages 
than younger age. Figure 6 shows this clearly for sites in AF and 
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AM. However, contradicting results were observed in AW as in 
the case of method of operation. In AW, the older leachate has 
shown higher pollution potential.

Leachate Treatment

To comprehend the varying performance found in treating 
landfill leachate using biological, physical, or physicochem-
ical approaches, adequate information of landfill leachate 
characteristics is essential. Common landfill leachate treat-
ment methods utilized are identified in Fig. 7. Leachate 
treatment methods can be classified as biological treatment 
methods, physical and chemical treatment methods and 
combined treatment methods [10••, 50•, 51•]. Apart from 
these, leachate channeling methods which include recycling 
of leachate and combined treatment with domestic sewage 
also practiced as a method to reduce the pollutant load in 
landfill leachate [19, 50•].

The metabolic activities of microorganisms result in the 
biological breakdown of pollutants. Biological approaches 

are often employed to remove nutrients (e.g., ammonia) 
and organic compounds due to their cost effectiveness; 
yet, such procedures may not be able to effectively remove 
heavy metals and non-biodegradable organics [21•]. Based 
on whether the biological processing medium requires 
oxygen, biological purification techniques can be classi-
fied as aerobic or anaerobic [51•]. Conventional activated 
sludge processes (CASP) [52•], sequencing batch reac-
tor (SBR) [53•, 54•], rotating biological contactor (RBC) 
[27••], and moving bed biofilm reactor (MBBR) [55•] can 
be identified under aerobic biological methods that can 
used to treat landfill leachate. Anaerobic filters [56], up-
flow anaerobic sludge blanket reactor (UASBR) [57•], are 
among the widely used anaerobic methods.

Chemical precipitation [58•], advanced oxidation process 
(AOP) [59•], coagulation-flocculation [60•], membrane fil-
tration [61•], ion exchange, adsorption [62•], and electro-
chemical treatment [63•] are among the physical–chemical 
methods investigated for landfill leachate treatment.

For leachates of high BOD/COD ratio, a biological 
treatment procedure is often preferable [64]. The limited 
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biodegradability of stabilized landfills, on the other hand, 
suggests that physical and chemical approaches, such as 
membrane separation methods, are preferable to biologi-
cal processes [65•]. While mature leachate can be treated 

with physicochemical methods, young leachate requires bio-
logical treatments; integration of biological processes and 
physicochemical approaches has recently been shown to be 
extremely effective [10••]. Other integrated physicochemical 

Table 1  Leachate treatment options used in tropical countries

Treatment  
technology

Conditions used Country/
zone

Influent conditions Removal  
efficiency

References

BOD (mg/L) COD (mg/L) BOD/COD NH4
+-N (mg/L)

Biological treatment methods
Bioremediation Using garbage 

enzyme
India ND ND ND ND [67]

Constructed 
wetland

Using Colocasia 
esculenta, Gynerium 
sagittatum, and 
Heliconia  
psittacorum

Colombia ND 626 ND ND COD 67% [68•]

Anaerobic reactor Anaerobic sequencing 
batch

biofilm reactor

Brazil ND 856 ND ND COD 71% [69]

Aerobic reactor Aerobic sequencing 
batch

reactor (ASBR)

Malaysia ND 3200 ND 1800 COD 43%
Ammonia 96%

[70•]

ND ND ND ND
Physical/chemical treatment methods
AOP Fenton process Malaysia ND 10,516 ND ND COD 79% [71]
AOP Ozone/catalyst 

(ZrCl4)
Malaysia 234 3125 0.07 1674 COD 88%

Ammonia 79%
[72•]

AOP Vermiculite/ozonation Brazil ND ND ND ND COD 17% [73]
Adsorption Silica nanoparticle India ND 19,691 ND ND COD 77% [74]
Coagulation/

flocculation
Tannin-based natural 

coagulant
Malaysia 59 893 0.07 531 COD 55%

Ammonia 91%
[75]

Coagulation/
flocculation

Polyaluminium 
chloride and 
Dimocarpus 
longan seeds as 
flocculant

Malaysia 130 3036 0.04 794 COD 62% [76]

Coagulation/
flocculation

Red earth as coagulant Malaysia ND ND ND ND COD 67%
Ammonia 43%

[77]

Combined treatment methods
AOP/adsorption 

(ion-exchange)
Supercritical water 

oxidation
(ScWO)/zeolite

Brazil 134 1255 0.11 355 COD 74% [78•]

AOP/ coagulation Electro oxidation 
and coagulation

Brazil 2098 3181 0.66 963 COD 90% + 
Ammonia 90% + 

[79•]

Coagulation/
membrane 
filtration

Integration of 
ultrafiltration 
membrane process 
with chemical 
coagulation

India ND ND ND ND Turbidity 73% [80•]

AOP/coagulation 
flocculation

UV-based sulfate 
radical oxidation 
process/  
coagulation- 
flocculation

Malaysia 351 5123 0.07 2700 COD 91%
Ammonia 5%

[81•]

AOP/adsorption MAC/ozonation Taiwan ND ND ND ND COD 74% [82]

283Current Pollution Reports (2022) 8:273–287



1 3

approaches and combined physicochemical/biological pro-
cedures are found to be less effective than combined coag-
ulation-flocculation/nanofiltration and activated sludge/
reverse osmosis, respectively [66••].

Table 1 shows the landfill leachate technologies followed 
in tropical conditions. The usage of chemical methods, in 
particular the use of AOP, can be recognized in the context 
of leachate treatment in tropical countries.

Conclusions

Published data from 228 leachate samples from 145 landfills 
and dumpsites from 18 countries in the tropical region were 
analyzed. Tropical climatic zone was considered under 3 
sub-regions for the analysis. More than 54% of WDFs in 
tropical climatic zone are ODs. Considering the sub-regions 
of the tropical zone, the number of engineered landfills is 
higher in AF, whereas the number of OD is higher in AM 
and AW. Considering the age of the sites considered, 75% 
of the sites are classified as old, whereas on 25% are young. 
Average  BOD5 values of 2435.16 mg/L, 3455.77 mg/L, 
and 2127.79 mg/L and average COD values 7985.1 mg/L, 
6185.17  mg/L, and 7504.32  mg/L, respectively, were 
reported from AF, AM, and AW regions. As degradation of 
organic matter happens over the life time of the leachate, the 
BOD and COD values from old engineered landfills could be 
identified as the lowest. However, the BOD and COD values 
in the open dump sites did not demonstrate a considerable 
difference with age owing to the fact that open dumps sites 
receive waste continuously over layers and the leachate being 
renewed in the course. Inorganic contaminants in terms of 
 NH4

+-N, TDS, and  Cl− were over a wide range in AM com-
pared to AF and AW regions. Average concentrations for 
these inorganic pollutants were highest in AF region and 
lowest in AM region. Higher inorganic pollutant concentra-
tions have been reported for young leachates. Heavy metal 
concentrations have been modest values with exceptions for 
Ni in AM region with considerably higher concentrations. 
BOD and COD, as well as TKN and AN, had a high positive 
correlation in the correlation study. pH was found to have 
negative correlations with heavy metals owing to the low 
solubility of heavy metals at higher pH values. In compari-
son of the LPI from open dumps and engineered landfills, 
in AF and AM, the open dump sites show the higher LPI 
than engineered landfills. LPI for young leachate is higher in 
both the AF and AM in both open dump sites and engineered 
landfills. This is in agreement with the fact that the age has 
an effect on pollution potential of the leachate.
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