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Abstract: The objective of the study was to determine the relationship between the structure of
phytocenoses in riparian wetland ecosystems and the hydrologic regime in a lowland river floodplain.
The hydrobotanical study was conducted over three years—2017, 2018, and 2019—which differed in
hydrological conditions (wet, average, and dry) in a middle section of the Supraśl floodplain (NE
Poland) as a case study. The results showed that the structure and pattern of phytocenoses in the
floodplain are primarily controlled by the hydrological regime of the river and the geomorphological
features of the area. The reach and duration of the flood contributed to a specific pattern of riparian
vegetation. Based on the plant community structure and riparian habitat indicators such as soil
moisture, fertility, reaction pH, soil granulometry, and organic matter content, four habitat types
were identified and supported by linear discriminant analysis (LDA): wet, semi-wet, semi-dry, and
dry zones. The indicator species analysis (ISA) revealed species characteristic of the zones with the
dominance of reed rush, reed canary grass, anthropogenic or partially natural herbaceous communi-
ties along watercourses or riparian meadows, respectively. Natural inundation of the river water is
an important driver of site-specific vegetation elements and habitat types and determines habitat
availability, biodiversity, and ecosystem functions of wetlands. This knowledge can serve as the basis
for conservation efforts, sustainable management practices, and decision-making processes aimed at
maintaining the biodiversity and ecological integrity of riparian ecosystems in similar regions.

Keywords: lowland river; hydrology; riparian vegetation structure; floodplain; natural flow regime;
riparian zonation

1. Introduction

Natural floodplains are among the most productive and diverse ecosystems in the
world. Due to increasing anthropogenic pressures and the influence of factors resulting
from ongoing climate change, they are among the most threatened ecosystems [1].

Natural wet grasslands in the floodplains of lowland rivers are highly valuable for con-
servation [2,3]. They form important components of wetland habitats [4]. These grasslands
provide multiple ecosystem services, including water regulation, carbon sequestration,
landscaping, wildlife (native plants, birds, and invertebrates), recreation, and leisure [5]. In
opinion of Grzybowski and Glińska-Lewczuk [6,7], traditional low-intensity management
practices such as mowing or grazing are necessary to maintain their characteristic flora and
promote species diversity. However, these semi-natural habitats have experienced rapid
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decline due to insensitive land use changes such as drainage, agricultural intensification,
flood control, and neglect [5,8,9].

The structure of these dynamic environments, characterized by high diversity and
habitat rotation [10,11], is primarily regulated by river flow regimes [12,13] and geomorphol-
ogy [14]. Numerous studies have identified flood events as an important factor influencing
plant distribution along elevation gradients in floodplains [15–17]. Therefore, floods and
associated fluvial and geomorphic processes shape and maintain the spatial and temporal
heterogeneity of floodplain areas and their plant communities [14,18,19].

The response of vegetation to hydrological changes depends on its ecophysiological
characteristics [20]. Changes in habitat structure are influenced by species’ environmental
tolerance and the ability to compete with other species [21,22]. Plant species respond
differently to direct flood or drought impacts, and these differences are reflected in species’
zonation along elevation gradients in floodplains [17]. Species that are highly competitive
under dry conditions [23] may not tolerate prolonged flooding and are easily damaged [24],
whereas species characterized by greater resilience benefit from flooding [25]. Species
tolerance to flooding determines their distribution in river valleys [26,27]. Studies by Van
Eck et al. [28] have shown that species with more tolerant traits dominate at lower, more
frequently flooded sites, while a greater number of less tolerant species are found at higher
elevations that are flooded less frequently. Ultimately, survival to flooding depends on the
timing, frequency, depth, and duration of the flood events [29,30]. Casanova and Brock [31]
indicate that the duration of floods plays a critical role and is the most important factor
in wetland plant community composition. Flooding events contribute to connectivity
between patches of plant communities. Water can transport seeds from habitats in upper
parts of the river network [32,33], altering local species composition [24,34]. Longitudinal
fragmentation prevents the normal downstream transport of nutrients, fauna, flora, and
organic matter, leading to the development of different environmental conditions along the
river channel [35].

Regular droughts are seasonal environmental changes that are predictable and, when
combined with regular flood events, increase ecosystem productivity (flood pulse concept) [36,37].
However, as climate changes, characterized by the increasing frequency and magnitude of
extreme weather events [38], disruptions to natural processes are occurring, leading to a
decrease in river water levels and posing a significant threat to the wetland ecosystems.
Declining water levels in rivers disrupt lateral connections, causing water to retreat from
floodplains [39]. This disruption of hydrological connectivity between riparian habitats
and the increasing heterogeneity of the river channel result in changes in the species
composition of the habitats.

The objective of our study was to evaluate the relationship between the species com-
position of vegetation in riparian meadow habitats and to determine the importance of
environmental variables, particularly hydrologic variables, that determine it. Through
changes in the ecological indicator values of vascular plants: soil moisture, fertility, pH,
soil granulometry, and organic matter content, we investigated whether specific moisture
zones determine the vegetation structure. We hypothesized that the reach and elevation of
flooding influences the abundance and distribution of plant species, which is reflected in
the structure and pattern of riparian habitats.

2. Materials and Methods
2.1. Study Site

The study was conducted on the lower course of the Supraśl River in NE Poland
(Figure 1). To determine the different indicators of wetland biophysical habitats in relation
to water level, we selected a fragment of the floodplain (2 km2) adjacent to the main river.
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Figure 1. Location of the Supraśl River in northeastern Poland and study area.

The Supraśl River is one of the semi-natural ecosystems and therefore plays an impor-
tant role in maintaining biodiversity in the region. The area hosts many bird species that are
strongly linked to specific hydrological conditions and habitat types [40]. For these reasons,
the upper part of the Supraśl floodplain was included in the Natura 2000 network as the
“Puszcza Knyszyńska” Special Protection Area for birds (PLB 200003) and the “Ostoja
Knyszyńska” (PLB 200006). In the wetlands of the study area, wading bird species such as
black-tailed godwit (Limosa limosa), redshank (Tringa totanus), lapwing (Vanellus vanellus),
snipe (Gallinago gallinago) and jack snipe (Gallinago media) breed.

The floodplain of the river is between 0.5 and 1.5 km wide and is characterized by a
flat bottom and gentle slopes as it cuts through the frontal moraine zone. The geology of the
valley is related to the Pleistocene glaciation, which shaped the area of the Białystok Upland
and the Sokółka Foothills. As a result of terrain evolution, sandy depressions and extensive
peat accumulations were formed in basin-like meltwater areas. The valley is characterized
by organic soils such as peat, peat–marsh, and marsh–mineral soils. In the study area, the
floodplain is well developed. The presence of peat–fibrous soils formed by the presence of
near-surface groundwater plays an important role in shaping the hydrological regime in the
study area, as they greatly increase groundwater retention. The hydrological regime plays
an important role in structuring the habitat types in the floodplain. There is a certain spatial
hydro-pedological pattern typical of natural central European floodplains that determines
the biogeochemical relationships between the river hydrological regime, soil formation,
and the corresponding plant communities [41]. Disturbance of this system, particularly by
limiting flooding, can adversely affect the quality of wetland habitats.

The Supraśl is a third-order river and the largest right-bank tributary of the Narew
River, belonging to the Vistula River basin. It has a length of 93.8 km and a catchment
area of 1844.4 km2. The Supraśl is a lowland river with a low channel gradient of 0.76‰,
which is fed by numerous springs and groundwater [42]. This river exhibits a moderate
hydrological regime characterized by a seasonal pattern of water flow. The highest flows
occur in spring due to snowmelt and rainfall, while the lowest flows occur in summer
due to evaporation and transpiration. Flow rates at Nowosiółki gauge (2009–2020) varied
throughout the year, averaging between 0.23 and 2.18 m3 s−1. The high water retention in
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the river basin is reflected in the absence of sudden floods and in the relatively low ratio
between the highest and lowest average monthly flows, which range from 10 to 12.

The qualitative and quantitative seasonality of water flow is influenced not only by
morphological parameters or the size of the catchment area but also by the climatic con-
ditions of the region. According to the climate classification of Koeppen and Geiger [43],
the study area is located in the western part of the Dfb (Dfb: D = Continental; f = Fully
humid; b = Warm summer) zone. The study area is characterized by a humid continental
climate with certain subboreal features, resulting in long frosty winters, short early springs,
a relatively short growing season, and warm summers. The average annual air tempera-
ture is 6.5 ◦C, and the growing season lasts 192 days. Winds from westerly (20.4%) and
southwesterly (17.5%) directions prevail. The average annual precipitation in the region
from 1971 to 2022 is 589 mm with a minimum of 456 mm and a maximum of 748.9 mm.
Precipitation is not evenly distributed throughout the year. The highest rainfall occurs from
May to August and peaks in August, while the lowest rainfall occurs between January and
March. Snowfall accounts for about 21% of the annual precipitation. The average number
of days with rainfall above 0.1 mm is 169, including about 63 days with snowfall. The
study period (2017–2020) was characterized by variable moisture conditions. The year 2017
was exceptionally wet with a total precipitation of 935 mm. The years 2018 and 2019 were
classified as dry with precipitation totals of 536 mm and 517 mm, respectively.

The Supraśl River valley is characterized by low population density and low levels
of agricultural fertilization [44]. Although the riverbed follows a natural course, its hy-
drographic network was significantly modified by the introduction of a dense system of
drainage ditches. These measures were aimed at adapting the area for agricultural use
as pastures and meadows. The drainage system is currently used to irrigate the mead-
ows through an extensive groundwater infiltration system. Currently, approximately 65%
of the floodplain area in this section is occupied by wet meadows. These habitats have
high ecological value and serve as important habitats for bird fauna. The dominant plant
communities here belong to the Molinio-Arrhenatheretea class, which includes semi-natural
or anthropogenic meadow and pasture communities of meso- and eutrophic habitats
occurring on mineralizing and drying peatlands of low-lying peat [45].

2.2. Hydrological and GIS Data Sources

Hydrological conditions and spatial analysis of floods in the study area were per-
formed with the help of a geographic information system (GIS) using QGIS 3.22.14 software
(Białowieża). This allowed the visualization of data and simulation of water-level changes.
The extent of river flooding in the valley delineating the river recharge zone was deter-
mined based on a digital elevation model (DEM) with a spatial resolution of 1 m, which
was obtained from the resources of the Main Office of Geodesy and Cartography in Poland.
A data set of surface and groundwater levels from hydrological years 2017–2019 was used
for the hydrological analyses. The data were obtained from automatic pressure sensors
programmed to record water levels with an accuracy of 1 cm per hour. The sensor network
consisted of two devices installed in the river channel monitoring sites (R1-R2), four in the
ditch network (D1-D4), and two in the piezometric observation wells (P1-P2), (Figure 1).
Hydrological data were compared with water levels and flow rates of the Supraśl River
measured at the nearest gauge in Nowosiółki by the Institute of Meteorology and Water
Management (IMGW-PIB). Due to the long distance between the gauge and the study
area, a data correction was applied. The determination of the extent of inundation was
combined with the measurement of the height of the water table using GPS RTK (Real-Time
Kinematic), which determines the coordinates of points in real time directly in the field.

2.3. Field Observations and Riparian Habitat Classification

The fieldwork included three survey cycles in 2017, 2018, and 2019 with surveys
conducted from June to August. Initially, 4 types of riparian wetland habitats were distin-
guished based on an analysis of orthophoto maps (Geodesy and Mapping Center), field
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surveys, and hydrological data: I wet, II semi-wet, III semi-dry, and IV dry in the studied
section of the floodplain (Figure 1).

To assess whether the four identified riparian habitat zones, corresponding to the influ-
ence of the duration and frequency of river floods, affect the distribution and composition
of vegetation communities, we applied ecological indicator values as the most common and
sufficiently effective method [46]. Thus, indicator values for soil moisture (SME), fertility
(FE), reaction pH (RE), soil granulometry (SGE), and organic matter content (OME) were
adopted from Zarzycki et al. [47]. Indicator values were calculated based on in situ obser-
vations of plant species distribution/occurrence and assigned to a 5-point scale (weighted
average). For species for which Zarzycki et al. [47] provided ranges of values, the average
values from these ranges were taken. Only average indicator values from plots where at
least three species with known indicator values were present were considered in the anal-
ysis. At each point where zone-specific vegetation was present, survey plots (10 × 10 m)
were located to within 1 m using a GPS receiver. A total of 25 phytosociological relevés
(vegetation plots) were conducted in 2017 and 25 phytosociological relevés (vegetation
plots) were conducted in 2019. In the assemblages of Agropyro-Rumicion crispi, 16 phytosoci-
ological relevés (vegetation plots) were created, while Phragmitetum australis, Phalaridetum
arundinaceae, and Lysimachio vulgari—Filipenduletum all had 3 plots each. A list of plant
species was compiled for each plot, including a rating of the plants using a modified Braun–
Blanquet 9-point scale. Plant community diversity was analyzed in four riparian habitat
zones of the Supraśl floodplain using the species richness index (S), Shannon–Wiener diver-
sity index (H’) [48,49], Margalef index (R) [49], Simpson dominance index (D), and Pielou
evenness index (J’) [50]. The names of plant taxa were adopted after Szwed et al. [51]. The
syntaxonomic nomenclature was adopted according to Ratyńska et al. [52].

It should be noted that the designated riparian habitat zones were also used as pastures
for the Konik Polski, also known as the Polish horse (Konik means short horse), a semi-wild
breed used mainly for conservation grazing. The studied section of the river floodplain is
adjacent to extensively used cropland (cereals).

2.4. Statistical Analyses

Statistical analyses were performed to evaluate the effects of hydrologic factors on
plant species distribution. The normality and homogeneity of variance assumptions were
evaluated using Shapiro–Wilk and Levene’s tests. For comparison between the means
of biodiversity parameters in wet and dry years as well as riparian moisture zones, we
performed an analysis of variance (one-way ANOVA) with Student’s t-test and Tukey’s
HSD test as a post hoc procedure, respectively. Correlation analysis was used to evaluate
the relationship between water level and vegetation occurrence.

To evaluate whether plant species could quantitatively represent different riparian
habitat types (moisture zones) along a lateral moisture gradient, we ordinated riparian
herbaceous vegetation data using linear discriminant analysis (LDA) in statistic package
PAST 4.03 (Natural History Museum—University of Oslo, Norway) [53]. Major vegetation
types were applied to establish the discriminant functions, and then the samples were
classified into predicted vegetation zones. Based on the comparisons between a priori
groups and predicted groups, riparian moisture zones were introduced to quantitatively
interpret the results.

To identify vegetation communities with an affinity for a particular habitat type, in-
dicator species analysis (ISA) [54] was used. The ISA value is calculated as the product
of relative species abundance and frequency of occurrence to obtain a maximum indi-
cator value (IV) for each species. Each species is then assigned to the group for which
it has the highest indicator value. Indicator values range from 0 to 100, with a value of
100 representing a perfect indicator species, i.e., a species that occurs exclusively in one
group, is found in all samples in that group, and has a high relative abundance within
that group. A value of zero represents a species that has no indicator value for any group,
is generally either rare in the data set, or occurs with a nearly uniform distribution in
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all or most groups [55]. Statistical significance of ISAs is assessed by a randomization
procedure with 999 random permutations. Taxa that were significant at the 0.05 level were
considered indicator species. The ISA was performed in PC–ORD version 6.0 developed
and distributed by MjM Software (Gleneden Beach, OR, USA) [56].

3. Results
3.1. Hydrological Characteristics

Analysis of long-term hydrological data (2006–2020) for the Supraśl River showed a
typical flood pulsing system (Figure 2). Due to intensive precipitation and snow melt, the
year 2017 was characterized by extremely wet conditions, while 2018 was average and 2019
was classified as a dry year.
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Figure 2. Hydrograph of pulsing water table of the Supraśl River: (A) 2010–2020, (B) 2018–2020. Low
water = environmental flow. Blue slices in the circles denote % of days with floods, while green with
no floods (below bankfull level).

Water levels of the Supraśl River exceeded the bankfull level in the wet year 2017 for
almost 81.6% of days, while in 2018, it was 21.1%, and in the dry year 2019, they were only
exceeded 6.6% of days. During 2017, the flood covered the entire study area and reached a
maximum stage of 109 cm above the edge of the riverbed. In 2018, the maximal water stage
was 64 cm above the riverbanks, and in 2019, it was only 26 cm.
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3.2. Riparian Habitats

Within the study area, the dominant species were floodplain grasslands represented
by species from the Agropyro–Rumicion crispi alliance. On the fringes of a large complex of
floodplain grasslands, riverside herbaceous plants with Filipendula ulmaria—anthropogenic
or partially natural herbal communities along watercourses developed. These are ecotone
areas between the watercourse, which are moderately used for agriculture. Their species
structure was unstable and most often corresponded to the characteristics of the Lysimachio
vulgaris–Filipenduletum association. In the southern part of the area, the Phalaridetum
arundinaceae rush was developing on marshy soils, touching the extensive Phragmitetum
reed rush. Depending on the water conditions, they accompany the main species, mostly
mud species from the Calthion alliance or herbaceous species from the Filipendulion alliance.

Various reaches and durations of the water table during flood pulsing across the
naturally flat bottom of the Supraśl River valley contributes to specific riparian diversity
patterns. The lateral zonation of vegetation formed by the reach of floods is presented in
Figure 3.
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Figure 3. Left panel shows floodplain area flooded in 2017, 2018, and 2019 with the reach of riparian
vegetation types and distribution of waterfowl species detected. Right panel shows diagrams with
flow duration curves for the years of study, respectively. Data from 2017 to 2019 on the occurrence
of valuable avifauna species are taken from the materials of the Polish Society for the Protection of
Birds (PTOP, not published) and are included as a background characterizing the natural values of
the studied section of the Supraśl River.
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In consecutive years, flow duration curves for the wet 2017, average 2018 and dry
2019 years showed that the vegetation zone adjacent to the river bed is the most vulnerable
to floods with flows as low as 2 m3 s−1, as noted in 2019. During the years of average
conditions, when flow rates are as high as 3 m3 s−1 (2018), water covers the flat bottom.
Flows as high as 3–6 m3 s−1 cause inundations of not only the flat floodplain area but also
local convex forms as local sand bars. Under such conditions, certain phytocoenoses have
adapted to wet and dry periods.

Based on the bird data for the study area provided by the Polish Society for the
Protection of Birds (PTOP), we were able to determine a specific distribution of avifauna in
relation to the reach of flood and vegetation zones (Figure 3). For example, during floods in
2017, when water depth exceeded 1.0 m, tall vegetation in zones I and II (shrubs and trees)
was preferred by snipe (Gallinago gallinago), while black-tailed godwit (Limosa limosa) or
lapwing (Vanellus vanellus) tended to prefer shallow waters in zone III. Waterfowl species
were more widespread in the dry years of 2018 and 2019.

Based on hydrological and botanical data, four moisture habitat zones in the Supraśl
river floodplain have been determined based on linear discriminant analysis (Figure 4a,b).
LDA ordination yielded significant results when fitted with the percentage of flooded area
at maximum inundation depth (hmax). The LDA best described the separation between
moisture habitat zones. It indicated that the phytocenoses were distributed across the
lateral floodplain gradient and the reach of floods, whereby zone I is more associated
with riverbeds, zone II dominated by reed canary grass is associated with flat lands with
shallow depressions that are flooded, zone III is principally overgrown by anthropogenic
or partially natural herbaceous communities along watercourses and is associated with
ditch networks, and zone IV creates floodplain riparian meadows on uplands flooded on
extremely wet occasions.
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Figure 4. Linear discriminant analysis biplot (A) and confusion matrix (B) for plant species distribu-
tion in moisture habitat zones in the Supraśl River floodplain. Denotations of dominant communities:
Agr_Rum: Agropyro-Rumicion crispi; Phr_aus: Phragmitetum australis; Pha_aru: Phalaridetum arundi-
naceae; Lys_vul: Lysimachio vulgari—Filipenduletum. Zone: I moist (reed rush), II semi-moist (reed
canary grass), III semi-dry (anthropogenic or partially natural herbaceous communities along water-
courses), IV dry (floodplain riparian meadows) in the studied section of the Supraśl floodplain.

Biodiversity indicators showed statistical differences between zones (Figure 5) apart
from the number of taxa and evenness. The highest differences in biodiversity were stated
among the most remotely located zones I (H’ = 0.6) and IV (H’ = 1.45). In zone I, a clear dom-
inance of the rush vegetation was observed and supported with dominance index D = 0.7.
Differences between zones were also shown for indicator values of SME, FE, RE, SGE, as
well as OME, and they are attached in the Supplementary Materials (Tables S1 and S2).
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3.3. Indicator Species

Considering the relative abundance of 87 species in the four zones, we found species
that indicate changes in moisture conditions (Table 1). The highest number of indicator
species (9) was found in the dry zone (IV), representing floodplain herbaceous meadows
and in the ecotone zone formed by semi-wet (II), which is represented by reed canary grass
rushes. The number of indicator species was lower in the other two zones where the water
conditions were more stable.
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Table 1. The indicator species analysis (ISA). List of plant species characteristic for the different mois-
ture conditions in the Supraśl river floodplain. Moisture riparian zones were defined by hydrology
and plant communities criteria [54].

Moisture
Riparian Zone Species *

Observed
Indicator
Value (IV)

IV from Randomized Zones
p-Value **

Mean ±SD

I
Wet

Phalaris arundinacea 80.5 32 8.98 0.0002
Phragmites australis 55.3 16.7 7.3 0.0016
Symphytum officinale 45.5 12.2 6.63 0.0008
Urtica dioica 34.9 13.3 6.89 0.0132
Alisma plantago-aquatica 27.3 10 5.48 0.0304
Galium palustre 27.3 9.6 5.6 0.0112
Carex rostrata 18.2 8.9 4.8 0.0720

II
Semi-wet

Filipendula ulmaria 88.6 21.7 7.33 0.0002
Galium palustre 71.4 11.9 6.49 0.0004
Cirsium rivulare 70.4 16.4 6.88 0.0002
Potentilla erecta 53.6 15.3 7.46 0.0010
Veronica scutellata 52.7 13.7 6.83 0.0006
Agrostis capillaris 42.9 9.6 5.55 0.0018
Galium molugo 34.7 19.8 7.4 0.0444
Achillea monticola 28.6 8.5 4.6 0.0204
Galium aparine 28.1 9.9 5.5 0.0106

III
Semi-dry

Deschampsia caespitosa 70.3 39.6 11.53 0.0134
Festuca arundinacea 61.5 30.3 9.82 0.0092
Lythrum salicaria 51.8 29.8 10.13 0.0296
Epilobium palustre 44.5 21.1 7.25 0.0132

IV
Dry

Anthoxanthum odoratum 76.1 22.7 9.03 0.0002
Achillea millefolium 72.3 26.7 9.71 0.0010
Lychnis flos-cuculi 56.5 23.9 6.76 0.0012
Juncus compressus 52.1 23.2 7.4 0.0052
Festuca pratensis 50.9 29.4 7.06 0.0114
Potentilla anserina 49.2 23.9 7.28 0.0066
Vicia cracca 41.6 16.1 7.55 0.0096
Taraxacum officinale 30.8 10.1 5.68 0.0132
Leontodon autumnalis 68 27.9 8.04 0.0002

Note(s): * only statistically significant species are presented; Monte Carlo test of significance of observed maximum
indicator value for variable after 4999 permutations. ** proportion of randomized trials with indicator value
equal to or exceeding the observed indicator value p-values = (1 + number of runs ≥ observed)/(1 + number of
randomized runs). Zone = group identifier for group with maximum observed II and IV.

ISA analysis (Table 1) showed that among indicator species with high water require-
ments, Phalaris arundinaceae (IV = 80.5, p = 0.0002) and Phragmites australis (IV = 55.3,
p = 0.0016) dominate. Both species in wet zone I form well-developed and low-impacted
riparian galleries. At the other extreme (IV dry zone), remotely located from the riverbed
were phytocoenoses composed of simpler communities characterized by species adapted
to dry conditions and with occasional flood disturbances such as Anthoxanthum odora-
tum (IV = 76.1, p = 0.0002), Achillea millefolium (IV = 72.3, p = 0.001), Leontodon autumnalis
(IV = 68.0, p = 0.0002), and Lychnis flos-cuculi (IV = 56.5, p = 0.0012). For semi-wet zone
II, ISA produced the highest values for Filipendula ulmaria (IV = 88.6, p = 0.0002), Cirsium
rivulare (IV = 70.4, p = 0.0002) or Galium palustre (IV = 71.4, p = 0.0004), while semi-dry
zone III showed the highest values for Deschampsia caespitosa (IV = 70.3, p = 0.013), Festuca
arundinaceae (IV = 61.5, p = 0.009), or Lythrum salicaria (IV = 51.8, p = 0.030).

4. Discussion
4.1. Patterns of Vegetation Diversity in Riparian Zones of Rivers

River floodplains are among the areas with the highest biodiversity, as these areas
represent habitats with high levels of structural and functional dynamics, which are mainly
induced by a hydrological regime [57]. Natural riparian landscapes are covered by mosaics
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of habitats differing in age, moisture, sediment characteristics, productivity, biota diversity,
abundance, composition and successional status [58].

Considering the dynamic nature of river floodplains, we defined a tool that allows
for understanding the relationship between the structure and functioning of a wetland
ecosystem and hydrological changes in the river. The obtained results allowed us to
simplify the complex ecosystem of river wetlands into a concept, combining the structure
and pattern of wetland plants controlled mainly by both hydrological regime of the river
and a pattern of hydrogeomorphic features of riparian area, as shown in Figure 6.
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Effects of hydrological conditions on vegetation in riparian area (B).

This concept takes into account both physical and biological elements that influence
the dynamics and patterns of inundation along the river. Additionally, we considered
various biological aspects of the wetland ecosystem, such as vegetation types, habitat types,
and their interrelationships. Based on these data, we are able to forecast how changes in
river water levels affect habitat availability, biological diversity, and the functions of the
wetland ecosystem.

The natural decrease in the degree of hydration, determined by the relief of the
terrain and the efficiency of the drainage network, resulted in variations in the floristic
composition of floodplain grasslands. Within the river floodplain, flood disturbance and
water availability vary along lateral gradients; over the length of the river, the intensity
and frequency of flood disturbance decreases with increasing distance from (and above)
the active channel, paralleling the increase in floodplain elevation resulting from sediment
aggradation and riverbed incision processes [59]. Thus, changes in the hydrological regime
set up patterns of plant species diversity in river riparian zones, which is in line with the
works of other authors [60–62]. Our hydroecological analysis performed on the example
of the Supraśl River floodplain (NE Poland) presents significant results by coupling the
wetland landscape ecology into hydrological units.

Based on them, the composition of wetland communities in riparian biophysical habi-
tats varies along a lateral hydrological gradient. The distribution, extent, and abundance
of wetland communities increase progressively from herbaceous communities through
marshes within the riverine zone, reflecting a moisture gradient. Simultaneously, the pre-
dominant patch area and quantity shift as transitional meadow communities replace them
beyond the riverine zone. Floodwater plays a pivotal role in regulating the distribution
of wetland communities within the studied floodplain. The typical marsh communities
in the saturated zone give way to a broader distribution of wet meadows in the season-
ally saturated zone, which is eventually supplanted by the predominant presence of wet
meadows in the yearly unsaturated zone. Additionally, a cluster analysis of quantitative
spatial characteristics reveals numerical distinctions between marshes and non-marshes
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in the core of the floodplain, further emphasizing the influence of hydrological factors on
wetland community composition.

Vegetation locally reduces stream gradient stress across the floodplain. Disturbance
regimes influence plant species diversity at local scales [63] through increasing groundwater
depth and decreasing the replenishment of shallow soil moisture by overbank floods [64].
A zonal vegetation in floodplains is shaped by broad hydrological gradients, periodic flood-
ing [65] and, to a lesser extent, soil composition [66]. Species that prefer wet microhabitats
grow and survive longer compared to those in dry microhabitats [66].

4.2. Changes in Vegetation Cover Due to Hydrological Variations

Our results (Figure 5) confirmed that riparian vegetation is a suitable environmen-
tal change indicator that responds directly to the flow regime in an inter-annual time-
frame [67,68]. We have shown that vegetation cover changes as a result of flooding and
subsequent drying in the higher parts of the floodplain, which is consistent with the results
of Kleinhans et al. [59].

The intermediate intensity or frequency of disturbance (or length of time since dis-
turbance) should result in the highest levels of diversity by allowing a mixture of species
adapted to stable environments and species adapted to frequent disturbance to coexist,
although the magnitude of the effect may be small [69,70]. Plant indicator systems in the
riverbed are well known [71–73]; however, they do not cover the vegetation of the flood
zones of the river valley. This is due to the limitations of river monitoring systems, which
do not include assessments of river valley biodiversity. As a result of our research, we have
also identified a set of indicator species that represent the variability of the river’s impact
on floodplain vegetation. Low flows were mostly regarded as negative both for aquatic
organisms [74] and for riparian vegetation [75]. It could be proven that the species is able
to outlast unsuitable conditions as long as seeds are remnant in the seed bank and that the
negative effects of the new floodplain stream on the target species can be compensated
sufficiently. Literature data [66,76] indicate that the duration of the withdrawal period
must be long enough (here, germination is observed after 3 weeks, and there is at least
another 3 weeks for rooting) to ensure successful establishment of the target species. If
this period is too short, or if the water level rises significantly again, the seedlings may
be fatally damaged [76] and the seed bank may be depleted without new seeds being
produced. On the other hand, if the period of drought is too long, more competitive reed
species may become established and outcompete the target species. Vegetation is in a
fluctuating equilibrium that changes over time [77]. In a dry year, there may be large
areas of typical terrestrial vegetation, whereas in wet years, reed species or aquatic plants
may dominate [78]. Floodplain vegetation is able to recover from disturbances (floods
or dry years), and a resilient system needs even these extreme events from time to time
to reduce strong competitors [79,80]. Thus, if humans want to restore floodplains that
suffer from static water conditions, dynamically changing water conditions need to be
restabilized at irregular intervals, just as nature would do. If the release of water into the
floodplain is controlled by humans through sluices (rather than automatically through spill-
ways in the embankment; [81]), the hydrological objectives and target habitats and species
must be clearly defined. Plant species characteristic of the various moisture conditions
in the floodplain (Table 1) should be monitored to evaluate the effectiveness of potential
restoration efforts.

4.3. Impact of Unstable River Valley Environment on Other Natural Values

The unstable environment of the river floodplain, combining the high dynamics of
plant succession with frequent habitat restoration due to flooding, is inhabited by unique
bird communities adapted to such conditions (Figure 6). Changes in the river environment,
which limit the extent and frequency of flooding, are usually associated with climate change
or anthropogenic transformations [6,7]. We observed that changes in the moisture content
of the Supraśl Valley and the introduction of the Konik polski population in 2019 caused a
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reconstruction of meadow-breeding waders. Horses on a pasture influence the grass not
only by grazing but also by trampling, rolling and leaving droppings. The year-round
grazing of Konik polski horses, kept at a low stocking rate in the Supraśl Valley, has little
effect on the grassland communities. The impact of the presence of horses was mainly
manifested by changes in the structure of the sward and a reduction in the sward cover [82].
The droughts in the Supraśl Valley favored the growth of the populations of lapwing and
black-tailed godwit, but they did not cause changes in the use of the Supraśl Valley by
redshank, and they reduced the abundance of snipe. The black-tailed godwit and the
redshank seem to have special needs, i.e., large wet meadows with large areas flooded
in spring, where extensive cattle grazing takes place and where no additional fertilizer
is used [83]. Our studies show that the lapwing has the highest tolerance to changes
in meadow moisture, while the snipe has the lowest, which is also confirmed by field
observations of other authors [84–86].

The results of this study provide valuable information regarding the relationships
between wetland vegetation structure and hydrological changes in rivers. Riparian wetland
ecosystems play a crucial role in maintaining biological diversity. By examining the impact
of water level changes in rivers on habitat availability and the biological diversity of
wetland ecosystems, we aim to better understand the complex interactions between riparian
ecosystems and river hydrology. Our research, as well as that of Osmundson et al. [87]
and Obolewski et al. [88], suggests that river valley restoration should begin with the
identification of physical and biological pathways linking flow changes with ecological
functions and species responses.

This knowledge can serve as a basis for conservation efforts, sustainable management
practices, and decision-making processes aimed at preserving the biological diversity and
ecological integrity of riparian ecosystems in similar regions. Monitoring and detailed
solutions for the use of the floodplain should be included in the management of nature
conservation forms (in case of the Supraśl floodplain, the task plan for the protection of the
Natura 2000 site) after public consultation and then implemented in the water management
plan (a mandatory document for water management authorities). By understanding the
dynamics of riparian wetland ecosystems and their response to hydrological changes,
we can work toward the conservation and sustainable management of these important
ecological systems.

5. Conclusions

The results of our study on the impact of hydrological conditions on the functioning
of wetland ecosystems, using the example of the Supraśl floodplain located in central
Europe, show that the natural flow regime, defined as flood pulse, is responsible for
the development of site-specific phytocenoses adapted to local hydrological conditions.
Maintaining the river’s natural flow regime with seasonal and annual water changes is
crucial to ensure optimal preservation of biodiversity in wetland ecosystems. The spatial
heterogeneity of flooding along rivers and streams affects local species diversity. The
composition of riparian vegetation depends on the extent and timing of flooding and, as
such, can indicate the development of strategies for riparian area management, biodiversity
conservation, and planning actions.

The example of the Supraśl River shows that dynamically fluctuating water conditions,
floods and droughts that occur at irregular time intervals require a long-term observation
period for reliable ecological monitoring of riparian wetlands. Therefore, a thorough
understanding of the functioning of such ecosystems and the relationships within them
is essential. Therefore, it is important to select and clearly define target groups from
among the many competing floodplain habitat types. All these factors make the Supraśl
River floodplain an important natural area that requires special protection and sustainable
management. Preserving biodiversity, maintaining appropriate hydrological conditions,
and using natural resources wisely are crucial for effective conservation and meeting the
needs of current and future generations.
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Then, the intended measures have to be conducted, and the resilient system will react.
This approach should further minimize detrimental effects on other habitats which are not
of first priority (in case of groundwater drawdown the aquatic habitats) but whose conser-
vation is also compulsory, e.g., due to the EU Water Framework Directive. All stakeholders
should be involved in this process in order to avoid discussions or even the suspension of
measures during appropriate periods (e.g., natural floods or low water conditions).

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/w16010164/s1, Table S1: List of ecological indicators and plant
species; Table S2: Analysis of variance (two-way ANOVA: year and zone) for ecological indicator values.
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73. Połeć, K.; Grzywna, A.; Tarkowska-Kukuryk, M.; Bronowicka-Mielniczuk, U. Changes in the Ecological Status of Rivers Caused
by the Functioning of Natural Barriers. Water 2022, 14, 1522. [CrossRef]

74. Walters, A.W.; Post, D.M. How Low Can You Go? Impacts of a Low-Flow Disturbance on Aquatic Insect Communities. Ecol. Appl.
2011, 21, 163–174. [CrossRef] [PubMed]

75. Stromberg, J.C.; Beauchamp, V.B.; Dixon, M.D.; Lite, S.J.; Paradzick, C. Importance of Low-Flow and High-Flow Characteristics to
Restoration of Riparian Vegetation along Rivers in Arid South-Western United States. Freshw. Biol. 2007, 52, 651–679. [CrossRef]

76. Jensch, D.; Poschlod, P. Germination Ecology of Two Closely Related Taxa in the Genus Oenanthe: Fine Tuning for the Habitat?
Aquat. Bot. 2008, 89, 345–351. [CrossRef]

77. Wang, D.; Liu, Y.; Zheng, L.; Li, D. Growing Impacts of Low-Flow Events on Vegetation Dynamics in Hydrologically Connected
Wetlands Downstream Yangtze River Basin after the Operation of the Three Gorges Dam. J. Geogr. Sci. 2023, 33, 885–904.
[CrossRef]

78. Finger-Higgens, R.; Bishop, T.B.B.; Belnap, J.; Geiger, E.L.; Grote, E.E.; Hoover, D.L.; Reed, S.C.; Duniway, M.C. Droughting
a Megadrought: Ecological Consequences of a Decade of Experimental Drought atop Aridification on the Colorado Plateau.
Glob. Chang. Biol. 2023, 29, 3364–3377. [CrossRef]

79. Ilg, C.; Dziock, F.; Foeckler, F.; Follner, K.; Gerisch, M.; Glaeser, J.; Rink, A.; Schanowski, A.; Scholz, M.; Deichner, O.; et al.
Long-Term Reactions of Plants and Macroinvertebrates to Extreme Floods in Floodplain Grassland. Ecology 2008, 89, 2392–2398.
[CrossRef] [PubMed]

80. Larson, D.M.; Carhart, A.M.; Lund, E.M. Aquatic Vegetation Types Identified during Early and Late Phases of Vegetation Recovery
in the Upper Mississippi River. Ecosphere 2023, 14, e4468. [CrossRef]

81. Tockner, K.; Schiemer, F.; Baumgartner, C.; Kum, G.; Weigand, E.; Zweimüller, I.; Ward, J.V. The Danube Restoration Project:
Species Diversity Patterns across Connectivity Gradients in the Floodplain System. Regul. Rivers Res. Mgmt. 1999, 15, 245–258.
[CrossRef]
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