Co-funded by the Erasmus+ Programme of the European Union

Best practices report

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Project info		
Project title	Graduates for Climate Change adapted water management	
Project acronym	CCWATER	
Project reference number	t reference number 619456-EPP-1-2020-1-NO-EPPKA2-CBHE-JP	
Action type	Capacity Building in higher education	
Web address	https://www.waterharmony.net/projects/ccwater/	
Coordination institution Norwegian University of Life Sciences (NMBU)		
Project duration 15 January 2021 – 14 January 2024		

Document control sheet		
Work package	WP1 – Analysis of assets, needs and best practices	
Ref. no and title of task	T1.3.2 Summary of best practices inside and outside the consortium	
Title of deliverable	D1.3.2 Best practices report	
WPleader	QTU	
Taskleader	UWM: Slwomir Kalinowski	
Author(s)	Szymon Kobus, Munkhtsetseg, Slwomir Kalinowski, Zakhar Maletzkyi, Katarzyna Glinska-Lewczuk	
Date	04/01/2021	
Dissemination level	Public	

Table of contents

Tab	le o	of con	tents	2	
List	of f	figure	S	3	
List	List of tables Error! Bookmark not defined.				
1	Ge	enera	l information	4	
1	.1	Task	description	4	
1	.2	Met	hod of Review	4	
1	.3	Tear	n	4	
2	Se	ection	1: Teaching water-climate change relevant subjects	5	
2	.1	Теас	hing water-climate change relevant subjects	5	
	2.	1.1	The importance of environmental and climate awareness	5	
	2.	1.2	Universal social education	5	
	2.	1.3	Integrating knowledge about water, environment and climate in higher education	7	
	2.	1.4	Problems and needs of education in the field of water management	7	
	2.	1.5	The importance of environmental and climate awareness	8	
	2.	1.6	Universal social education	9	
	2.	1.7	Integrating knowledge about water, environment and climate in higher education 1	11	
	2.	1.8	Problems and needs of education in the field of water management 1	L1	
	2.	1.9	Universities and study programs in the field of CC and water management 1	12	
2	.2	Wat 16	er-climate change relevant subjects taught in leading universities outside the consortiu	m	
2	.3	Теас	hing water-climate change relevant subjects4	18	
2	.4	Wat	er quality monitoring5	50	
3	Se	ection	2: University – enterprise collaborations	51	
3	.1	Univ	ersity – Enterprise collaborations5	51	
	3.	1.1	Financing CC and water projects in EU6	53	
	3.	1.2	Example of project on University-Enterprise Collaboration (Erasmus +)	54	
	3.	1.3	Best practices on CC water (source: Erasmus+)6	55	
3	.2	Univ	versity – enterprise collaborations – examples	73	
3	.3	Univ	versity – enterprise collaborations	79	
4	Se	ection	3: Quality assurance existing outside the universities	31	
4	.1	Qua	lity assurance existing outside the universities 8	31	
	4.	1.1	Polish legislation	31	
	4.	1.2	Government activity	31	
	4.	1.3	Project klimada, adaptation to climate change	32	
	4.	1.4	Enterprises activity	32	
	.2	Oua	lity assurance – examples	21	

List of figures

General information

1 General information

1.1 Task description

T1.3.1 Review of best practices outside the consortium

Wide and deep search of best practices in

- Teaching water-climate change relevant subjects
- University-enterprise collaborations and
- Quality assurance existing outside the universities included in the current consortium

1.2 Method of Review

Online search of best practices

- Erasmus+ results database
- Screening within European and North American universities
- UN-Water and UN-Climate resources
- National Bodies

1.3 Team

M.C.Riyas (Task leader)

Munkhtsetseg Zorigt

SB. Weerakoon

Stanislawa Koronkiewicz

KPP. Pathirana

Slawomir Kalinowski

Wei Liu

Janaka Gunarathna

Xuejun Bi

2.1 Teaching water-climate change relevant subjects

Prepared by Szymon Kobus, PL-UWM

The aim of this paper is to draw attention to the needs of education in the field of water management, with the simultaneous deepening of knowledge of water, environment and climate change, especially in the fields of study affecting the protection and shaping of water resources. In the face of progressing climate change, universal environmental and climate education of the society, including rational and balanced water management, is particularly important.

2.1.1 The importance of environmental and climate awareness

The International Decade "Water for Sustainable Development" 2018-2028, inaugurated by the UN General Assembly, is to bring together water stakeholders to develop cooperation and raise public awareness on sustainable water management. Availability of water determines the achievement of at least some of the 17 Sustainable Development Goals mentioned in the 2030 Agenda (not only Goal 6 - clean water and sanitation). Global water scarcity is increasing as populations grow and become wealthier, extreme climatic events intensify, cities expand, and the environment is exploited and polluted. Meanwhile, insufficient knowledge of a significant part of the population influences short-sighted decision-making and careless consumption choices, and perpetuates patterns of behavior that are harmful to the environment and water resources.

The results of a survey on environmental awareness of Polish citizens (conducted for the Ministry of Environment) reveal information gaps in Polish society regarding water management and climate change. Among other things, the research (2018) found that respondents recognize the need to modernize existing stormwater drainage (47.8%), strengthen emergency services (45.7%), and develop and modernize flood control facilities (39.9%), but underestimate the link between the development of blue-green infrastructure and water retention and mitigation of climate extremes. Only 1 in 10 Poles have taken action to reduce the effects of extreme weather events. The action indicated least often was participation in training on energy efficiency and water management, indicating a scarcity of opportunities or an aversion to environmental education. Findings from the Eurobarometer survey indicated that only one in four Poles (26%) were well informed on water management issues. Most respondents (69%) were of the opinion that not enough is said in the media about the issue of water saving.

In recent years, there has been an intensification of water education actions and programs conducted by Universities, State Water Holding Polish Waters, municipal water and sewage companies (pol. MPWiK) and pro-ecological associations and NGOs. However, it is necessary to support universal ecological and climate education at all levels of education: from kindergarten through primary, secondary and higher education. It is also very important to encourage the society to continuous education, including participation in trainings and programs of universities of the third age. The dissemination of water knowledge and exchange of best practices are essential factors of communication between scientists and politicians, local activists and the public.

2.1.2 Universal social education

In addition to the formal education system in disciplines related to water management, universal social education in this field is also important. Public awareness of water problems is as important as the professionalism of experts, especially in planning and designing activities in this area at various levels. Conscious social groups are able not only to cope with active support and solving some problems in water management, but what is extremely important, they are invaluable partners during all kinds of social consultations. Not only those directly related to water management, but also the living environment in the place of residence, e.g. local development strategies,

environmental protection plans. Such education is a multi-faceted challenge that requires the efforts of various environments. Several key actions are driven by improving awareness of the ecological and climate challenges related to water:

- Access to information is the basis of all education. Institute of Meteorology and Water Management (pol. IMGW) data resources have already been made available, and the flood hazard and flood risk maps are available on the so-called Hydroportal, but still a lot of information in the hands of administrative entities is not generally available without using the "access to public information" mode, which is burdensome for the average user. In addition, GIS (Geographic Information Systems) data in various spatial information systems requires synchronization and association with water information. It is also necessary to unify the standard of planning databases and improve the readability of the message. A good example is the activities of the Environment Agency of England, where flood hazard maps are made available in a simple, intuitive information system for residents and associated with consultancy in the issues of housing and flood safety.
- Access to guides and good practices i.e. texts, videos, podcasts containing systematic advice on how to act in the event of threats or problems with water. The presence of easily accessible, professional guides is the key to independent activity of people in this field. In many countries, the number of guides addressed to residents, local governments and activists of non-governmental organizations (NGOs) is huge. The American Federal Emergency Management Agency (FEMA) provides several dozen of them, and the Australian ADR center (Australian Disaster Resilience) currently offers 45 guides only in the field of floods. Also, in Poland there are more and more guides and catalogs of good practices for municipalities and residents. However, their popularization requires the improvement of accessibility and systematization. Perhaps the right solution would be to create a large, publicly available water information platform, linked to Hydroportal and local geoinformation systems.
- Trainings and workshops are usually conducted by organizations and associations for local authorities and residents, as part of environmental education programs financed, for example, by the provincial Funds for Environmental Protection and Water Management (pol. WFOŚiGW) or Municipal Water and Sewage Companies (pol. MPWiK). It is also worth considering financing public water education from fees for water services collected by State Water Holding Polish Waters (pol. PGW Wody Polskie) and allocating part of the fees for sealing the surface to prevent water problems at the place where they occur. The key topics of the training courses should include aspects related to the water cycle in nature, climate change, threats and possibilities of climate adaptation, retention and re-use of rainwater and gray water, rational and responsible use of water and sewage services, and the importance and protection of greenery in cities and in rural areas.
- Supporting the education of children and schoolchildren is a form of transferring basic knowledge and facts about water and water management. This knowledge is partially transferred on various subjects, but requires updating and adaptation to the changing climatic and environmental conditions as well as Poland's water resources. An example is flood education. The manuals contain information on how to respond, but the importance of flood prevention and preparation is insufficiently emphasized. Educational programs also ignore the knowledge of natural retention, advantages and disadvantages of currently used solutions, the importance of the ecological condition of a river or water footprint. That is why it is important for professional circles to support teachers in their work. Systematized and easily accessible guides can also be good educational material.

Acquiring knowledge through action - includes collecting experiences through participation in various forms of activity, e.g. in social consultations of plans prepared at the national, regional and local level, or in voluntary networks monitoring the aquatic environment, water quality, weather parameters, etc. It is also participation in increasingly fashionable scientific activities carried out by citizens under the guidance of professionals (so-called citizen science). In the world, these are not marginal activities, e.g. in the USA, most of the continuous water quality measurements in rivers and lakes are performed by volunteers. Similar data can be cited from many countries around the world and concern water quality, air quality, meteorological parameters, plants, birds, etc. They are financed and managed by universities, government agencies and NGOs.

2.1.3 Integrating knowledge about water, environment and climate in higher education

The deepening of knowledge in various areas and fields of science leads to an increasing specialization of research and education programs and the separation of scientific disciplines. The result is a lack of a holistic perception of the environment and low awareness of the ecological and hydrological consequences of spatial decisions among planners, politicians and local authorities. The limited knowledge of spatial planners, town planners, architects and civil engineers in the field of water resources and environmental management results in the marginalization of these aspects in the planning and designing of investments, especially in the case of a shortage of economic and legal tools forcing natural and retention compensation. On the other hand, insufficient knowledge of spatial planning and environmental protection among graduates of engineering, water management and environmental engineering may limit the possibilities of interdisciplinary cooperation. It is recommended to restore the importance of water science in universities. Hydrologists and practitioners who know the latest scientific research and practical working methods as well as the most modern measurement techniques and models could play an important role.

2.1.4 Problems and needs of education in the field of water management

The research conducted in 2020 (by IG Polish Waterworks, Institute of Environmental Protection-National Research Institute, Polish Agency for Enterprise Development) on human capital in the water and sewage sector shows, among others, that students of Environmental Engineering have a limited awareness of the prospects future employment and the realities of the labor market, which may result from the lack of internships during education or their insufficient dimension, and from the lowering level of education in vocational and secondary schools. Employers are more likely to employ people aged 50+ than 20+ due to their greater technical skills and qualifications. Some employers who employ school and university graduates invest in employee training in parallel with working in a specific position, using the help of experienced professionals. Companies have an invaluable testing ground, which is their infrastructure. Therefore, cooperation of universities with the economic environment and the involvement of enterprises in the process of educating future employees is extremely important. It is also necessary to constantly update the knowledge and use in the education process the results of the latest research (e.g. in the field of new pollution, energy efficiency and circular economy, social communication, adaptation to climate change) and digital analytical and design tools. The transformation of the economy, accelerated by the COVID-19 pandemic, will require the retraining of large groups of employees or supplementing their competences with digital technologies.

In the face of the changing climate and the resulting disturbances, observed in individual elements of the hydrological cycle, it is necessary to consider a thorough reform of educational programs in hydrology, hydraulics and water management. For several years, the time devoted to teaching these subjects has been reduced (even at faculties with "environment" in the name). Currently, at the 1st

degree engineering studies, in the fields of Engineering and Environmental Protection, the study of subjects related to water and hydrology in general is limited to a few (ten) hours of lectures throughout the entire teaching cycle. The shortage of auditorium or design exercises limits the students' ability to perform calculations or develop models. Even less than two decades ago, technical and agricultural universities offered future specialists - hydrologists and water engineers several subjects (fluid mechanics, hydrodynamics, hydrology, water management, water construction, etc.), each of which included lecture and auditorium and / or design parts and laboratory for much larger hours. The reduction of educational programs led to the degradation of knowledge about water in young engineers, misunderstanding of the processes governing the hydrosphere and, as a consequence, ignorance of climate change. The second dangerous effect is the increasingly visible generation gap among specialists in hydrology and water management, authorized hydraulic technicians, as well as among lecturers.

The education of modern-minded hydraulic engineers and builders is an extremely important and responsible task. A large group of senior specialists in hydraulic engineering and hydraulic engineering prefer hydrotechnical solutions based on significant interference in the river itself and river valleys. Additionally, the industry lacks high-class specialists with design and executive qualifications. There are also no modeling elements on physical models to verify data and design solutions. As a result, a significant proportion of projects are of poor quality and require additions or redesigns. Increasing the quality of education in the field of hydraulic engineering and hydraulic engineering with increasing emphasis on environmentally friendly solutions, the need to design compensating measures, interdisciplinary preparation, social communication skills, etc. it is a necessary condition for the training of a new generation of professionals in these specialties. Additionally, training programs should include courses on EU directives related to water management and the requirements related to their implementation in Poland. The lack of understanding of these legal regulations is a frequent cause of problems with obtaining construction permits for hydrotechnical facilities.

Water engineering should be combined with elements of environmental engineering and ecohydrology to make students aware of the importance of natural retention and restoration of small watercourses, irrigation drainage, nature based solutions (NBS) and biotechnology. It is also necessary to deepen and use the knowledge about the role of water management in spatial planning and urban design, as well as the impact of catchment development on water relations.

The decline in the interest in education in the field of Water Engineering and Management is largely due to the reduction in the number and scale of hydrotechnical investments, at which graduates could find a well-paid and interesting job. The lack of large investments does not preclude the possibility of education in various specialties in this field. However, it is necessary to define the vision of the development of water management in Poland and the nature of related investments, and then modify the content of the education programs.

The aim of this paper is to draw attention to the needs of education in the field of water management, with the simultaneous deepening of knowledge of water, environment and climate change, especially in the fields of study affecting the protection and shaping of water resources. In the face of progressing climate change, universal environmental and climate education of the society, including rational and balanced water management, is particularly important.

2.1.5 The importance of environmental and climate awareness

The International Decade "Water for Sustainable Development" 2018-2028, inaugurated by the UN General Assembly, is to bring together water stakeholders to develop cooperation and raise public awareness on sustainable water management. Availability of water determines the achievement of

at least some of the 17 Sustainable Development Goals mentioned in the 2030 Agenda (not only Goal 6 - clean water and sanitation). Global water scarcity is increasing as populations grow and become wealthier, extreme climatic events intensify, cities expand, and the environment is exploited and polluted. Meanwhile, insufficient knowledge of a significant part of the population influences short-sighted decision-making and careless consumption choices, and perpetuates patterns of behavior that are harmful to the environment and water resources.

The results of a survey on environmental awareness of Polish citizens (conducted for the Ministry of Environment) reveal information gaps in Polish society regarding water management and climate change. Among other things, the research (2018) found that respondents recognize the need to modernize existing stormwater drainage (47.8%), strengthen emergency services (45.7%), and develop and modernize flood control facilities (39.9%), but underestimate the link between the development of blue-green infrastructure and water retention and mitigation of climate extremes. Only 1 in 10 Poles have taken action to reduce the effects of extreme weather events. The action indicated least often was participation in training on energy efficiency and water management, indicating a scarcity of opportunities or an aversion to environmental education. Findings from the Eurobarometer survey indicated that only one in four Poles (26%) were well informed on water management issues. Most respondents (69%) were of the opinion that not enough is said in the media about the issue of water saving.

In recent years, there has been an intensification of water education actions and programs conducted by Universities, State Water Holding Polish Waters, municipal water and sewage companies (pol. MPWiK) and pro-ecological associations and NGOs. However, it is necessary to support universal ecological and climate education at all levels of education: from kindergarten through primary, secondary and higher education. It is also very important to encourage the society to continuous education, including participation in trainings and programs of universities of the third age. The dissemination of water knowledge and exchange of best practices are essential factors of communication between scientists and politicians, local activists and the public.

2.1.6 Universal social education

In addition to the formal education system in disciplines related to water management, universal social education in this field is also important. Public awareness of water problems is as important as the professionalism of experts, especially in planning and designing activities in this area at various levels. Conscious social groups are able not only to cope with active support and solving some problems in water management, but what is extremely important, they are invaluable partners during all kinds of social consultations. Not only those directly related to water management, but also the living environment in the place of residence, e.g., local development strategies, environmental protection plans. Such education is a multi-faceted challenge that requires the efforts of various environments. Several key actions are driven by improving awareness of the ecological and climate challenges related to water:

 Access to information - is the basis of all education. Institute of Meteorology and Water Management (pol. IMGW) data resources have already been made available, and the flood hazard and flood risk maps are available on the so-called Hydroportal, but still a lot of information in the hands of administrative entities is not generally available without using the "access to public information" mode, which is burdensome for the average user. In addition, GIS (Geographic Information Systems) data in various spatial information systems requires synchronization and association with water information. It is also necessary to unify the standard of planning databases and improve the readability of the message. A good

example is the activities of the Environment Agency of England, where flood hazard maps are made available in a simple, intuitive information system for residents and associated with consultancy in the issues of housing and flood safety.

- Access to guides and good practices i.e., texts, videos, podcasts containing systematic advice on how to act in the event of threats or problems with water. The presence of easily accessible, professional guides is the key to independent activity of people in this field. In many countries, the number of guides addressed to residents, local governments and activists of non-governmental organizations (NGOs) is huge. The American Federal Emergency Management Agency (FEMA) provides several dozens of them, and the Australian ADR center (Australian Disaster Resilience) currently offers 45 guides only in the field of floods. Also, in Poland there are more and more guides and catalogs of good practices for municipalities and residents. However, their popularization requires the improvement of accessibility and systematization. Perhaps the right solution would be to create a large, publicly available water information platform, linked to Hydroportal and local geoinformation systems.
- Trainings and workshops are usually conducted by organizations and associations for local authorities and residents, as part of environmental education programs financed, for example, by the provincial Funds for Environmental Protection and Water Management (pol. WFOŚiGW) or Municipal Water and Sewage Companies (pol. MPWiK). It is also worth considering financing public water education from fees for water services collected by State Water Holding Polish Waters (pol. PGW Wody Polskie) and allocating part of the fees for sealing the surface to prevent water problems at the place where they occur. The key topics of the training courses should include aspects related to the water cycle in nature, climate change, threats and possibilities of climate adaptation, retention and re-use of rainwater and gray water, rational and responsible use of water and sewage services, and the importance and protection of greenery in cities and in rural areas.
- Supporting the education of children and schoolchildren is a form of transferring basic knowledge and facts about water and water management. This knowledge is partially transferred on various subjects, but requires updating and adaptation to the changing climatic and environmental conditions as well as Poland's water resources. An example is flood education. The manuals contain information on how to respond, but the importance of flood prevention and preparation is insufficiently emphasized. Educational programs also ignore the knowledge of natural retention, advantages and disadvantages of currently used solutions, the importance of the ecological condition of a river or water footprint. That is why it is important for professional circles to support teachers in their work. Systematized and easily accessible guides can also be good educational material.
- Acquiring knowledge through action includes collecting experiences through participation in various forms of activity, e.g. in social consultations of plans prepared at the national, regional and local level, or in voluntary networks monitoring the aquatic environment, water quality, weather parameters, etc. It is also participation in increasingly fashionable scientific activities carried out by citizens under the guidance of professionals (so-called citizen science). In the world, these are not marginal activities, e.g. in the USA, most of the continuous water quality measurements in rivers and lakes are performed by volunteers. Similar data can be cited from many countries around the world and concern water quality, air quality, meteorological parameters, plants, birds, etc. They are financed and managed by universities, government agencies and NGOs.

2.1.7 Integrating knowledge about water, environment and climate in higher education

The deepening of knowledge in various areas and fields of science leads to an increasing specialization of research and education programs and the separation of scientific disciplines. The result is a lack of a holistic perception of the environment and low awareness of the ecological and hydrological consequences of spatial decisions among planners, politicians and local authorities. The limited knowledge of spatial planners, town planners, architects and civil engineers in the field of water resources and environmental management results in the marginalization of these aspects in the planning and designing of investments, especially in the case of a shortage of economic and legal tools forcing natural and retention compensation. On the other hand, insufficient knowledge of spatial planning and environmental protection among graduates of engineering, water management and environmental engineering may limit the possibilities of interdisciplinary cooperation. It is recommended to restore the importance of water science in universities. Hydrologists and practitioners who know the latest scientific research and practical working methods as well as the most modern measurement techniques and models could play an important role.

2.1.8 Problems and needs of education in the field of water management

The research conducted in 2020 (by IG Polish Waterworks, Institute of Environmental Protection-National Research Institute, Polish Agency for Enterprise Development) on human capital in the water and sewage sector shows, among others, that students of Environmental Engineering have a limited awareness of the prospects future employment and the realities of the labor market, which may result from the lack of internships during education or their insufficient dimension, and from the lowering level of education in vocational and secondary schools. Employers are more likely to employ people aged 50+ than 20+ due to their greater technical skills and qualifications. Some employers who employ school and university graduates invest in employee training in parallel with working in a specific position, using the help of experienced professionals. Companies have an invaluable testing ground, which is their infrastructure. Therefore, cooperation of universities with the economic environment and the involvement of enterprises in the process of educating future employees is extremely important. It is also necessary to constantly update the knowledge and use in the education process the results of the latest research (e.g. in the field of new pollution, energy efficiency and circular economy, social communication, adaptation to climate change) and digital analytical and design tools. The transformation of the economy, accelerated by the COVID-19 pandemic, will require the retraining of large groups of employees or supplementing their competences with digital technologies.

In the face of the changing climate and the resulting disturbances, observed in individual elements of the hydrological cycle, it is necessary to consider a thorough reform of educational programs in hydrology, hydraulics and water management. For several years, the time devoted to teaching these subjects has been reduced (even at faculties with "environment" in the name). Currently, at the 1st degree engineering studies, in the fields of Engineering and Environmental Protection, the study of subjects related to water and hydrology in general is limited to a few (ten) hours of lectures throughout the entire teaching cycle. The shortage of auditorium or design exercises limits the students' ability to perform calculations or develop models. Even less than two decades ago, technical and agricultural universities offered future specialists - hydrologists and water engineers several subjects (fluid mechanics, hydrodynamics, hydrology, water management, water construction, etc.), each of which included lecture and auditorium and / or design parts and laboratory for much larger hours. The reduction of educational programs led to the degradation of knowledge about water in young engineers, misunderstanding of the processes governing the hydrosphere and, as a consequence, ignorance of climate change. The second dangerous effect is the

increasingly visible generation gap among specialists in hydrology and water management, authorized hydraulic technicians, as well as among lecturers.

The education of modern-minded hydraulic engineers and builders is an extremely important and responsible task. A large group of senior specialists in hydraulic engineering and hydraulic engineering prefer hydrotechnical solutions based on significant interference in the river itself and river valleys. Additionally, the industry lacks high-class specialists with design and executive qualifications. There are also no modeling elements on physical models to verify data and design solutions. As a result, a significant proportion of projects are of poor quality and require additions or redesigns. Increasing the quality of education in the field of hydraulic engineering and hydraulic engineering with increasing emphasis on environmentally friendly solutions, the need to design compensating measures, interdisciplinary preparation, social communication skills, etc. it is a necessary condition for the training of a new generation of professionals in these specialties. Additionally, training programs should include courses on EU directives related to water management and the requirements related to their implementation in Poland. The lack of understanding of these legal regulations is a frequent cause of problems with obtaining construction permits for hydrotechnical facilities.

Water engineering should be combined with elements of environmental engineering and ecohydrology to make students aware of the importance of natural retention and restoration of small watercourses, irrigation drainage, nature-based solutions (NBS) and biotechnology. It is also necessary to deepen and use the knowledge about the role of water management in spatial planning and urban design, as well as the impact of catchment development on water relations.

The decline in the interest in education in the field of Water Engineering and Management is largely due to the reduction in the number and scale of hydrotechnical investments, at which graduates could find a well-paid and interesting job. The lack of large investments does not preclude the possibility of education in various specialties in this field. However, it is necessary to define the vision of the development of water management in Poland and the nature of related investments, and then modify the content of the education programs.

2.1.9 Universities and study programs in the field of CC and water management

University/ higher	Field of study	water-climate changerelated subjects (if they
education		were availableon the websites)
University of Life	Management and	- climatology and climate risk assessment
Sciences in Lublin	adaptation to climate	ecology,
	change	- biology and protection of polar ecosystems,
		- air protection and emission modeling,
		- water resource management,
		- methods of increasing water retention,
		- protection of plants against weather
		phenomena,
		- adaptations of organisms to climate change,

Table 1: Universities and study programs in the field of CC and water management

		- green infrastructure and urban adaptation to
		climate change,
		- adaptations to climate change in spatial
		management,
		- renewable energy sources
Cracow University of	Clean air engineering	- designing urban, water and green infrastructure
Technology	Water engineering and	to adapt cities to climate change
	management	
		- alternative energy sources,
	Renewable energy	- sourcing, processing and distribution of energy
	sources and municipal	from renewable sources
	infrastructure	
University of	water engineering and	- aquatic ecology
Agriculture in Krakow	management	- hydrology
Ateneum University in	Natural aspects of	- how to talk about climate change
Gdańsk	climate change with	- environmental aspects of climate change
	English	
Nature University of	Ecoenergy	- biomass energy
Poznań		- vegetable energy resources
		- ecology and protection of the biosphere
		- hydropower
		- wind energy and wind turbines
		- photovoltaics and solar collectors
		- technique and technology of biofuel production
		- renewable energy in construction
		- designing eco-energy systems
	Water engineering and	- engineering and water management facilities,
	management	- facilities and systems for protection against flood
		and drought,
		- water supply and sewage networks,
		- complex facilities and water-drainage systems,
		- hydrotechnical facilities and watercourse
		regulation,
		-0

		- systems for rational water management
Bialystok University of	Ecoenergy	- renewable sources and conversion of electricity
Technology		
Warsaw University of	Water engineering and	- water engineering, water management
Life Sciences	management	-water and drainage engineering
		-water and sewage management in the enterprise
		- renewable and unconventional energy sources
	Renewable energy	- legal conditions for energy management
	technologies	- assessment of the efficiency of renewable energy
		sources
		- design of renewable energy facilities
		- design of renewable energy facilities
		- climat change
	Biology	
Collegium Civitas	International and climate	
Warsaw	security	
European Social and	Climate and ecology	- climate changes in the past
Technical University of		causes and scenarios of climate change
Servant of God Robert		- the effects of climate change in poland and in the
Schuman in Radom		world
		- extreme phenomena
		- adaptations to climate change
		- air protection and emission modeling
		- methods of increasing water retention
		- renewable energy sources
		- financing pro-climate activities
		- climate risk management
Wrocław University	Geography Climate	- climate change - causes and consequences
	protection and air quality	- air quality management and environmental
	management	impact assessment
		- numerical modelling of atmospheric processes
		- protection and monitoring of the atmosphere

University of Life	Water engineering and	- water law and administration
Sciences in Wroclaw	management	- meteorology and climatology
		- hydrology
University of Warmia	renewable energy	- passive, zero- and plus energy construction
and Mazury in Olsztyn	sources	- wind energy
		- hydropower
		- harnessing of the sun energy
		- design of anthropogenic water reservoirs
	Ecological engineering	 hydrology and earth sciences
		- low emission systems of fuels applications
		- environmental effects of mining and energy
	Management of	generation secotrs
	renewable and mineral	- water resources management
	resources	
		- hydrology
	environmental protection	- water management in river catchments
		- water engineering
		- water ecosystems
	Landscape architecture	- water management in the landscape
		- hydrology

2.2 Water-climate change relevant subjects taught in leading universities outside the consortium

Summarized by SEUSL team

University	Module name	Module content
Harvard university	The health effects of	Health — The Human Face of Climate Change
	climate change	Heat & Air Quality
		Infections
		Nutrition
		Migration
		Research Methods
		 Responding to Climate Change
	Energy within	Energy Overview
	environmental constraints	Estimating Costs
		Environmental Impacts
		• Fossil Fuels
		• The Electric Grid
		• Solar Power
		Nuclear Power
		Demand Reduction and Efficiency
	Climate change policy:	Potential policies to reduce the emissions of the
	economics and politics	greenhouse gases that cause climate change
		• Why some governments might choose to address
		climate change more or less vigorously
		How national governments cooperate to address
		climate-change – including an in-depth look at the
		Paris Agreement and its antecedents
		 How sub-national governments might
		complement action by national governments
Massachusetts	Climate science, risk &	• Evidence for human-caused climate change.
Institute of Technology	solutions: a climate	 Uncertainty in our projections, engages in a
	primer	discussion of risk and risk management, and
		concludes by presenting different options for
		taking action.

Table 2: Water-climate change relevant subjects taught in leading universities outside the consortium

Climate action hands-on:	How citizen science can support community
harnessing science with	actions to combat climate change.
communities to cut	 Framing problems, design ways to gather data,
carbon	gather some of their own field data, and consider
	how the results can enable action.
Global climate change:	 Introduces scientific, economic, and ecological
economics, science, and	issues underlying the threat of global climate
policy	change, and the institutions engaged in
	negotiating an international response.
	 Develops an integrated approach to analysis of
	climate change processes, and assessment of
	proposed policy measures
Global warming science	 Scientific foundation of anthropogenic climate
	change and an introduction to climate models.
	 Fundamental physical processes that shape
	climate (solar variability, orbital mechanics,
	greenhouse gases, atmospheric and oceanic
	circulation, and volcanic and soil aerosols) and on
	evidence for past and present climate change.
	• Discuss material consequences of climate change,
	including sea level change, variations in
	precipitation, vegetation, storminess, and the
	incidence of disease.
	 Examines the science behind mitigation and
	adaptation proposals.
Land, water, food, and	• Examines land, water, food, and climate in a
climate	changing world, with an emphasis on key scientific
	questions about the connections between natural
	resources and food production.
International politics and	 Interconnections of international politics and
climate change	climate change.
	 The politicization of the natural environment, the
	role of science in this process, and the gradual
	shifts in political concerns to incorporate "nature".

		 Two general thrusts of climate-politics
		connections are pursued, namely those related to
		 Conflict – focusing on threats to security due to
		environmental dislocations and
		 Cooperation – focusing on the politics of
		international treaties that have contributed to
		emergent processes for global accord in response
		to evidence of climate change.
	D-lab: water, climate	• Vitally important interface of water, climate
	change, and health	change, and health.
		 Mitigation and adaptation to climate change as it
		pertains to water and health. Water-borne illness,
		malnutrition, and vector-borne diseases represent
		the top three causes of morbidity and mortality in
		regions of our focus.
Columbia University	Regional climate and	Appreciate the range of climate information
	climate impacts	available and to grasp its underlying basis and the
		reasons for varying levels of certainty. This
		includes sub seasonal to seasonal climate
		forecasts for developing climate services for
		better adapting to climate stresses, and decadal
		and climate change projections for improved
		climate policy.
		 Build a sufficient understanding of the science
		behind the information, and analyze examples of
		how the information can and is being used.
	Managing & adapting to	• Exploration of the concepts, methods, and tools
	climate	required to analyze climate-related problems and
		craft solutions for reducing vulnerability and
		building resilience to climate variability and
		change.
		 Examines and integrates risk assessment, risk
		perception, risk communication, and risk
		management.
		 Explores several forms of climate governance,
L	L	

	including market-based and policy responses and
	kinds of cultural and behavioral change that can
	be promoted by communication and education.
Climate and empire	Introduce students to the literature on climate
	change and its relationship to ontology, religion,
	violence, politics, and gender.
	• Explain climate change in its more recent
	incarnations in the Middle East and Asia.
	 Develop a mode of conceptualizing the present by
	rendering relevant geological time in addition to
	historical time, earth's history in addition to
	world's history
Dynamics climate var &	• An overview of how the climate system works on
change	large scales of space and time, with particular
	attention to the science and methods underlying
	forecasts of climate variability and climate change.
Climate & history:	• Examines the relationship between climate,
intersecting science,	scientific knowledge, and human societies.
	• First survey the role of climate as an historical
	actor of global history, rather than as the
	backdrop of political, social and economic events.
	• In the second part of the course, we will examine
	the history of weather and climate science, as well
	as climate change denialism.
Between science fiction	• Explores the entanglement between traditional
and climate fiction	science fiction and the emerging genre of climate
	change fiction (popularly known as "cli-fi") in Latin
	American literature.
	• Explore how the history of colonialism makes Latin
	America a unique laboratory of experimentation
	that combines these two genres.
Climate change: resilience	•
& adaptation	
Global governance:	 Introduces the key notions, levels, and forms of
climate change &	

migration	global governance regimes.
	• The course goes beyond international relations
	theories to provide a variety of theoretical and
	practical perspectives on global public policy,
	multi-level governance and the interlinkages
	between global-level interventions and regional,
	national, and local activities and outcomes.
	• The course is divided into four parts.
	• Part 1 focuses on key institutions, actors and actor
	constellations, as well as the effectiveness,
	representativeness, and coherence of multilateral
	regimes
	Part 2 focuses on various aspects of climate
	change governance
	• Part 3 on migration and refugees and the last part
	highlights conceptual links between mobility and
	climate and policy approaches to address them.
Climate change: resilience	Focused study of climate change adaptation
& adaptation	policy, exploring dimensions of adaptation across
	sectors and scales.
	Learn about perspectives from the natural
	sciences, law, architecture, anthropology,
	humanitarian aid, and public policy.
Food security, plant	Overall, the course will have three main
biology, climate change	components.
	Overview of interactions between the plant
	kingdom and human health, from food supply and
	nutrition to toxicology, contact dermatitis, aero-
	biology, inter alia.
	• In the second section, we segue to an overview of
	rising CO2 and climate change, and how those
	impacts in turn, will influence all of the
	interactions related to plant biology and health
	interactions related to plant biology and health with a merited focus on food security.

C	
	emphasis will be on evaluating preventative
	strategies related to mitigation and adaptation to
	climate change impacts specific to potential
	transformations of plant biology's traditional role
	in human society.
Climate change policy	• An understanding of the science, impacts,
	technological options, economics, and ethics of
	climate change policy.
	An understanding of the politics, international
	law, and international relations aspects of climate
	change policy.
Climate change and law	Broad introduction to the field of climate law in
	the United States and at the international level.
	 Overview of the causes and effects of global
	climate change and the methods available to
	control and adapt to it.
	• Examine the negotiation, implementation and
	current status of the United Nations Framework
	Convention on Climate Change, the Kyoto
	Protocol, and the Copenhagen Accord.
	• The focus then turns to the past and proposed
	actions of the U.S. Congress, the executive branch
	and the courts, as well as regional, state and
	municipal efforts. The Clean Air Act, the National
	Environmental Policy Act and the Endangered
	Species Act will receive special attention.
	• Evaluate the various legal tools that are available
	to address climate change, including cap-and-
	trade schemes; carbon taxation; command-and-
	control regulation; litigation; securities
	disclosures; and voluntary action.
	• The roles of energy efficiency, renewable energy
	sources, carbon capture and sequestration, and
	forestry and agriculture each receive close
	attention.

Climate change, disasters, and recovery: and recovery: Personally in their commun in the future. We take a syst evaluating climate change, p COVID-19 pandemic, and pr events.	mate crisis, both ities and professionally tem approach in past disasters, the
Global climate change and public policy • Environmental justice and climate resilience • Examine the intersections o environment – focusing on t impact of the environmental . Develop a deep understand and environmental justice in • Introduce students to the pr research, and advocacy invo development and implement environmental laws, energy solutions, and sustainable in • Review the impact and impl policies, as well assess case communities.	the growing role and al justice movement. ing of climate, equity, n New York City. olicies, stakeholders, olved in the ntation of policies, nature-based nfrastructure. lications of particular
Anthropology of climate change•Capstone workshop in climate and society•Economic theory of climate change• Examine the economics of c systematic fashion, with an theory. Topics of coverage c economics, the theory of dy commons problems, club th endogenous treaty emergerAdaptation to climate change• It familiarizes students with projects and programs that showing both the utility of t	emphasis on economic can include welfare mamic games, dynamic eory, hold up, and nce. current approaches to promote adaptation,

	some of their limits. The concepts of vulnerability,
	resilience and adaptive capacity are studied in
	detail; students learn to engage critically with
	these concepts.
Religion and climate crisis:	Connections between dramatic climate assaults
India	and religious practices and perspectives, taking
	Hindu India as an example: glaciers and floods,
	extreme weather, overpopulation, air and water
	pollution, deforestation. Hindu contexts, causes,
	and responses.
Water resources and	•
climate	
Seminar in race, climate	• Focus on placing race, gender, and class at the
change, and env	center of discussions of the environment, climate,
	and equity.
	Create an academic space which enables
	collaborative dialogue, action, and insight for
	systemic change towards racial equity and
	understanding within a climate and environment
	context.
The earth's climate	•
system	
Pred effect climate	•
change on glob forests	
Climate, technology, and	•
society	
Climate adaptation in	•
cities	
Cities and climate change	•
Equitable climate action	•
Energy decarbonization	 Understanding of the energy decarbonization
	pathways needed to address the risks of climate
	change and the economic, scientific, and political
	barriers that stand in the way. It will dig into the

		 technologies and strategies that can spur decarbonization in each of the major energy sectors. It will highlight the most critical public policy alternatives to reduce emissions effectively and efficiently, including carbon pricing, support for innovation, and energy efficiency programs. Describe historical failures, rare successes, and ongoing attempts to achieve energy decarbonization around the world.
University of	Hydrology: Water and	Reconstruct the history and scales of climate
Pennsylvania	Climate	changes
		 Learn basic atmospheric and ocean dynamics to
		understand fundamental climatic processes and
		future changes
		• Examine the mechanisms that act to drive climate
		change
		 Analyze long-term natural climate variability on a
		global and regional scale
		 Understand the importance of natural
		environmental change as a benchmark against
		which to assess human impacts, recent climate
		change, and future environmental change
		 Deepen insights into methods of scientific inquiry
		Refine communication skills to effectively share an
		understanding of climate change, with a focus on
		both science and policy implications
Princeton University	Hydrology: Water and	 Analysis of fundamental processes in the
	Climate	hydrologic cycle, including precipitation,
		evapotranspiration, infiltration, streamflow and
		groundwater flow
	Topics in Policy Analysis	 Using case studies, real-world examples, and in-
	(Half-Term): Climate	class exercises, in the areas of atmospheric and
	Change: Science, Policy	energy policy, the emphasis is on preparing both
	and Mitigation	non-scientists and scientists to use, understand,

	and critique science in environmental policy
	applications. Exercises are scaled to the student's
	background.
Topics in STEP: Global	• Examines international law and governance in the
Environmental	context of environmental problems.
Governance	 Considers the need for regulation under
	conditions of scientific uncertainty in issues such
	as climate change, bovine growth hormones,
	gmos, fisheries management, biodiversity
	conservation, and ozone depletion.
	• Explores the efficacy of diverse regulatory
	approaches, mechanisms for scientific advice to
	policymakers and participation by business firms
	and ngos.
	Considers intersections between environmental
	regulation (both domestic and international) with
	trade, investment, and multilateral development
	and aid programs.
Energy for a Greenhouse-	Overview of fundamental physical mechanisms
Constrained World	behind sustainable energy technologies, including
	solar thermal, solar photovoltaic, wind, nuclear,
	and hydroelectricity. Physics of the greenhouse
	effect, projected Earth's climate changes, as well
	as socio-economic impacts on energy uses and
	greenhouse-gas emissions are reviewed.
	 Variability, dispatchability, and a real power
	density of energy resources are discussed. Energy
	efficiency, energy storage, as well as transmission
	and distribution of electric power are touched
	upon.
Climate Change: Impacts,	 An exploration of the potential consequences of
Adaptation, Policy	human-induced climate change and their
	implications for policy responses, focusing on risks
	to people, societies, and ecosystems. As one
	example: we examine the risk to coastal cities

		from sea level rise, and measures being planned
		and implemented to enable adaptation.
		• Explore local, national and international policy
		initiatives to reduce greenhouse-gas emissions.
		The course assumes students have a basic
		background in the causes of human-induced
		climate change and the physical science of the
		climate system.
Cornell University	Climate Smart	Critically analyze the theory of multilevel
	Communities: State and	governance and debate the importance of non-
	Local Climate Change	state (NGO) and sub-national (regional, state and
	Science and Policy	local government) actors involved in climate
		change policy.
	Climate and Global	• Familiarizes from a range of disciplines with such
	Warming	contemporary issues in climatology as global
		warming and El Niño.
		 Introduces the natural greenhouse effect, past
		climates, and observed and projected climate
		changes and impacts. Also covers natural climate
		variations (e.g., El Niño) and their consequences
		and predictability. Readings focus on recent
		scientific findings related to climate change.
	Global Climate Change	 Introduce students to climate change science and
	Science and Policy	policy, with a focus on how science factors into
		the United Nations Framework Convention on
		Climate Change (UNFCCC) and how negotiations
		take place at the annual Conference of the Parties
		(COP).
		• Enable Cornell students to participate in global,
		engaged learning at the most significant annual
		meeting of the U.N. on climate change; and make
		a vital contribution to their academic studies and
		decisions about future work in international
		environmental affairs.
		Analyze contemporary climate change science and

•	-	
		global environmental policy-making; develop and
		address pertinent research questions; engage with
		experts in the field and help them with policy-
		relevant research; and develop experience with
		communications and social media.
	Climate Change and	Investigates social, political, and economic life in
	Global Development:	the age of the "Anthropocene": the current
	Living in the	geological era in which humans have irrevocably
	Anthropocene	altered the earth's biophysical systems.
		Analyze what political-economic dynamics have
		led to this, how climate change is known and
		predicted scientifically, and the impacts it has on
		politics, economies, environments, and societies
		across scales.
		• Drawing on case studies from around the world,
		we investigate topics including climate change
		impacts on land, oceans, animals, and forests;
		climate migrants and political instability;
		(un)natural disasters such as fires, floods, and
		hurricanes; and sea level rise and cities.
		 Investigate existing and potential political and
		economic responses to climate change ranging
		from international governance agreements and
		green markets to local climate justice movements.
	Controversies in Global	Introduce the interface between global climate
	Climate Change Science	change science and policy, with a focus on how
	and Policy	science factors into the United Nations
		Framework Convention on Climate Change
		(UNFCCC) and how negotiations take place leading
		up to and at the annual Conference of the Parties
		(COP).
		Critically analyze contemporary climate change
		science and global environmental policy-making;
		develop and addresses pertinent research
		questions; engage with experts in the field and
	1	<u> </u>

[
	help them with policy-relevant research; and
	develop experience with communications and
	social media
Critical Theory and	 Explores what German literature and thought,
Climate Change	especially the tradition of Critical Theory, can
	teach us about living in the Anthropocene.
	• Re-explores these questions in light of climate
	change in the 21st century. Of particular interest is
	not only the rhetoric of climate change and a
	critique of its denial in word and deed, but also
	narration: how does one narrate the singularity of
	this catastrophe? Different narrative structures
	from trauma and tragedy to the 19th century
	novel and 20th century surrealism will be
	examined.
Plant Responses to	• Explores the molecular, physiological,
Environmental Stresses	developmental and morphological characteristics
and Global Climate	that plants use to adapt to environmental
Change	stresses. Emphases are placed on stresses
	associated with global climate change including
	drought, flooding, extreme temperatures, salt,
	and environmental pollution.
	• Discuss strategies for improving stress tolerance in
	crops.
Sustainable Water	 In-depth analyses of those ecological and
Resource Management in	biological principles relevant to the sustainable
the Face of Climate	management of global fresh and marine water
Change	resources.
	 Scientific literature with current management
	issues, including water supply, dams, irrigation,
	and groundwater overdraft, and coastal
	development.
	 Topics include linkages between hydrologic
	variability and communities, groundwater-surface
	connections, flow paths for dispersal, patchily
1	1

0	5	•
		distributed water resources, and water quality
		controls on organisms, and adaptations to climate
		change.
	Plant Responses to	 Explores the molecular, physiological,
	Environmental Stresses	developmental and morphological characteristics
	and Global Climate	that plants use to adapt to environmental
	Change	stresses. Emphases are placed on stresses
		associated with global climate change including
		drought, flooding, extreme temperatures, salt,
		and environmental pollution.
		• Discuss strategies for improving stress tolerance in
		crops.
	Climate and Energy: a	• This course asks how we humans, as a species,
	21st Century Earth	found our way in to the current bottleneck of
	Science Perspective	climate and energy challenges, and how we, as a
		society, might find solutions that guarantee future
		generations can enjoy a stable climate, a secure
		and nutritious food supply, and access to clean
		energy.
	Perspectives on the	Critically important perspectives on the grand
	Climate Change Challenge	challenge of climate change.
		Cover a range of topics including the science of
		climate change, implications for ecosystems,
		oceans, forests, agriculture and communities, the
		important ethical, philosophical and legal insights
		on the issue, and provide thoughts on societal
		responses through international mechanisms,
		economic drivers and communication tools. This
		seminar series counts towards the requirements
		of the climate change minor and the ESS minor
		and major.
	Communicating Climate	• This course will ask you to read, write and design
	Change	many different forms and genres in order to
		experiment with the problem of communicating
		climate change, from pie-charts to science fiction

	-	and from photography to TED Tall a
		and from photography to TED Talks.
	Hydrologic Engineering in	• Introduces methods in hydrologic engineering to
	a Changing Climate	assess and cope with climate variability and
		change.
		Cover both statistical and physical approaches to
		analyzing and modeling hydrologic systems.
		Learn the core concepts of traditional statistical
		analyses in hydrology, and will also learn the
		limitations of these approaches in a changing
		climate.
		Become familiar with physical modeling
		approaches to understand hydrologic response
		under future climate projections and their
		limitations.
		Recognize the rapidly changing nature of the field
		of hydrologic engineering as it tries to adapt to the
		impacts of climate change.
		• Topics include extreme event frequency analysis,
		trend detection, water balance modeling, and
		hydrologic simulations under projected climate
		change. Applications to stormwater and flood risk
		analyses
	Climate Change and the	•
	Gulf of Maine	
	Climate Change	Organizational decision makers
	Leadership	Managers
		Risk and supply chain managers
		• Activists
		Anyone interested in understanding the impacts
		of climate change and working towards solutions
Duke University	Our Changing	•
	Atmosphere	
	Climate Change in the	• Exploration of climate change science focusing on
	Marine Environment	marine ecosystems and inhabitants - specifically
L	1	

	ocean acidification, warming and sea level rise.
	• Factors causing climate change, and how those
	vary spatially, focusing on sensitive polar
	ecosystems and marine mammal populations.
	Critical examination of climate change modeling
	using edgcm (research-grade Global Climate
	Model), focusing on how scientists use models,
	observations/theory to predict climate, and
	assumptions/uncertainty implicit in modeling.
	Discussion of potential human impacts including
	consequences of sea level rise and potential
	increases in disease due to climate change.
Global Warming	•
Global Environmental	Examines the international community's
Politics	responses to various global environmental
	problems. Because many environmental problems
	cross national borders, solutions require some
	form of global governance such as state-led
	mechanisms in the form of international
	environmental regimes.
	• Explore how and why states both succeed and fail
	to negotiate international governance
	mechanisms.
	Examine why some international environmental
	regimes are more effective than others and why
	states choose to comply with environmental
	regimes.
Energy and the	Overview of the challenges confronting humanity
Environment	as a consequence of our reliance on energy.
	Challenges include dwindling supplies, rising
	demand and environmental degradation. Realistic
	responses require an understanding of the
	complexity of the energy system, including energy
	resources, uses, and impacts, in the context of

1	
	social, political and economic imperatives.
Energy Futures and	Comparative energy crises and natural resource
Environmental Justice	management.
	 Uses case studies of fossil fuel, nuclear, and
	renewable energy resources drawn from
	anthropology, natural sciences, and even business
	economic readings.
Introduction to	Integrated scientific background for the impact of
Atmospheric Chemistry:	humans on the natural environment.
From Air Pollution to	• Topics covered include greenhouse gases and
Climate Change	climate, local and regional ozone pollution, long-
	range pollution transport, acid rain, atmospheric
	particulate matter pollution, and stratospheric
	ozone depletion.
Climate Change and the	• Examine global climate change and the range of
Law	actual and potential responses by legal
	institutions, in the U.S. and internationally.
	• Explore fundamental questions about legal
	response to looming crises using climate change
	as the focal point of a broader discussion.
Climate and Society	Consequences, and future trajectory of climate
	change.
	Cover physical observations of past climate
	change, role of human activities in driving climate
	change to date, and impacts of climate change on
	human and natural systems.
	Analyze how socioeconomic choices affects future
	climate as well as factors influencing those
	choices, including risk analyses, geoengineering
	proposals, intergenerational equity, climate
	metrics and the media.
Climate Change	Explores the economic characteristics of the
Economics and Policy	climate change problem, assesses national and
	international policy design and implementation
1	1

	Climate Change and Climate Modeling	 issues, and surveys the economic tools necessary to evaluate climate change policies. Course objectives are increased comprehension of economic aspects of climate change and ability to apply tools of economic analysis to climate policy and the responses of firms and households to it. Provide knowledge and understanding of physics of climate system and Earth system modeling for scientists, engineers and policy students with physics and mathematics background. Fundamental principles controlling physical and dynamic structure of climate system; discussion of relative roles of natural climate variability and external forces and anthropogenic influences. Explore numerical methods, develop computing skills, and deal with data handing as a means to an end of quantifying climate system behavior.
	Global Environmental Change	•
University of Michigan	Climate Change and Sustainability: Environmental Challenges of the 21st Century	 Study the impacts of modern human society on land, ice, freshwater, ocean, atmosphere, ecosystems, resources, and human well-being. We will also consider practical, local, and every-day considerations relevant to a sustainable human future. Discussions and analysis of spatial data, utilizing arcgis software, are used to investigate the role and impacts of change, toward developing mitigation and adaptation strategies.
	Our Changing Atmosphere	 The science of the greenhouse effect, stratospheric ozone depletion, polar ozone holes and urban smog. These phenomena and their possible consequences are discussed, along with the properties and behavior of the atmosphere and its interactions with other components of the

	environment.
Extreme We	ather • Provides an introduction to the physics of extreme
	weather events.
	 Uses examples of the thunderstorms, jet stream,
	floods, lake-effect snow storms, lightning,
	thunder, hail, hurricanes and tornadoes to
	illustrate the physical laws governing the
	atmosphere.
Ice Sheets, G	
Climate Char	
	theories describing how ice sheets and glaciers
	flow and current methods of observation.
Energy and C	
Change: Tecl	
Markets, and	
	(behavior, pricing, externalities, social norms) in
	the energy sphere.
Environment	
Living Well w	
	nature. Such systems include variations on
	anthropocentrism, including a number of e-centric
	cousins (ecocentrism, biocentrism, zoocentrism,
	etc.) As well as movements such as deep ecology
	and ecofeminism.
Topics in Cul	ture and • Explore some of the many answers to that
Environment	
	artists from around the globe have used art to
	advocate and care for the natural world. In 2015,
	Icelandic art star Olafur Eliasson installed twelve
	blocks of melting glacial ice in Paris's Place du
	Panthéon to act as a ticking clock for the UN
	Climate Summit. The following year, Native Water
	Protectors gathered at Standing Rock in
	opposition to the Dakota Access oil pipeline.

		• This course will also look beyond activism to ask
		what art can tell us about environmental history.
		 Explore foundational theories and examples of
		environmental art history from across time
		periods and geographies.
	Air Pollution Meteorology	• Extensive exploration of the important role that
		meteorology plays in the transport, dispersion,
		chemical conversion and deposition of pollutants
		in the atmosphere.
		 Sources emitting a wide range of potential
		pollutants are being built and retrofitted every
		year creating a demand to assess their potential
		impact on nearby (and even far-away)
		communities.
		• The need to understand and predict the transport
		and dispersion of pollutants has taken on an even
		greater importance.
	Global Warming	Review of the science of global warming including
		global radiation balance, geochemistry of natural
		and anthropogenic greenhouse gases, climate
		feedbacks, and historical and geological records of
		climate change; summary of the impacts of
		climate change on natural and systems and
		society; and discussion of potential remediation
		methods and the politicization of global warming.
University of southern	Global Environmental	
California	Changes and Health	
Yale University	Air Quality and Energy	
	Air Pollution Control	
Stanford University	Fundamentals of	
	Renewable Power	
	Stanford Climate Ventures	
	Lloyd Fouth The	
	Hard Earth: The	
	Interconnected Impacts of	

[I
	Global Climate Change	
	Scientific Basis of Climate	
	Change	
	Poverty, Infrastructure	
	and Climate	
	100% Clean, Renewable	
	Energy and Storage for	
	Everything	
	Energy Policy in California	
	and the West	
UC Berkely	Climate Change	
	Economics	
	Energy and Environmental	
	Issues	
	Climate, Energy and	
	Development	
	Environmental Science,	
	Policy, and Management	
	Colloquium	
Delft University of	Introduction to Water and	Understand the different processes at play in the
Technology	Climate	global water cycle.
		 Identify and describe the flows of water and sand
		in different riverine, coastal and ocean systems.
		 Identify mechanisms of climate change and
		explain the interplay between climate change, sea
		level, clouds, rainfall and future weather.
		 Explain why, when and which engineering
		interventions are needed in rivers, coastal and
		urban environments.
		• Explain why water for food and water for cities are
		the main challenges in water management and
		propose solutions.
		 Explain and confront the challenges in better
		understanding and adapting to the impact of

		climate change on water over the coming 50		
		years.		
University of	Climate Studies &	 Large-scale climate and weather effects such as El 		
Birmingham, UK	Meteorology Degrees	Large-scale climate and weather effects such as El Nino or global warming		
	Weterrology Degrees	 Nino or global warming Study about temperature, pressure, wind, 		
		humidity and rain		
		• The changes in latitude, altitude or the interaction		
		between Earth's atmosphere and the oceans		
University of British	Climate Action 2020	• Aims to reduce greenhouse gas emissions by 100		
Columbia	- Climate Adaptation and	per cent by 2050, to use the university as a lab to		
	Resilience	develop climate change solutions and to take full		
	- Climate and People	account for the costs of its decisions on		
	- Climate Economics	sustainability.		
	- Climate Justice			
	- Climate Science			
Vrije Universiteit		Included number of environmental areas such as		
Amsterdam,		water and climate risk, environmental economics		
Netherland		and environmental policy analysis.		
University of Victoria,	Sustainability Action Plan	 Includes measures to reduce greenhouse gas 		
Canada		emissions, reduce natural gas consumption and		
		reduce waste		
Asian Institute of	Climate Change and	• The objective of this course is to provide the		
Technology (AIT)	Water Resources	knowledge and understanding of climate change		
		and its impact on water resources availability, use		
		and demand. This course provides knowledge and		
		skills on modeling tools and methods for climate		
		change projections and impact assessment in		
		water sectors, vulnerability assessment and		
		adaptation strategies in managing water at		
		regional, national and local level		
University of	Climate Change, Energy	Climate Change, Energy and Settlements		
Southampton	and Settlements	• An introduction to the Earth's climate system and		
		climatic zones as basis for human activity and		
		settlements.		
		• The development of society in relation to the local		

		climatic and topographic conditions, resources		
		availability (food, building material, energy),		
		technical skills and the societal framework.		
		• The conditions for development, evolution and		
		collapse of civilizations.		
		• The development and organization of human		
		settlements addressing aspects of location,		
		society, advantages to individuals, form, function,		
		design and organization principles.		
		• An assessment of population development and its		
		implications on settlements, buildings and		
		resource consumption with particular focus on		
		energy consumption.		
		Discussion of how energy systems contribute to		
		the shaping of society and the conditions that		
		resulted in the agricultural and industrial		
		revolution.		
		An introduction to climate science looking at		
		historical and recent observations, climate		
		modelling and climate change predictions.		
		The assessment of global and regional climate		
		change implications and associated mitigation /		
		adaptation strategies.		
		• The concepts of sustainability, ecological and		
		carbon foot printing.		
National University of	Climate Science for	Introduction to the components of the Earth		
Singapore (NUS)	Engineers	system – atmosphere, oceans, biosphere,		
		cryosphere, pedosphere, humans, carbon cycle.		
		History of climate		
		 Principles of meteorology. Weather systems. Air 		
		masses. Winds. Thermodynamics of the dry and		
		wet atmosphere. Vertical gradients, stability.		
		Cloud formation and physics. Precipitation		
		formation, physics and types.		
		Stochastic rainfall generators. Alternating renewal		

	T			
		process. Neyman-Scott rectangular pulse. Rainfall		
		disaggregation.		
		Radiative transfer. Shortwave and longwave		
		radiation. Surface energy fluxes.		
		Turbulence, aerodynamic resistance and PBL		
		development. Land-atmosphere feedbacks.		
		• Extreme weather phenomena. Thunderstorms,		
		Tropical cyclones.		
		Numerical Weather Predictions. Meteorological		
		and climate models.		
		• Climate change and IPCC projections. CO2		
		emissions and future scenarios. Geoengineering		
		Climate downscaling and weather generators.		
		• Carbon footprints and climate targets.		
University of Dhaka	Climatology and Climate	Concept of climate, classifications of climate,		
(Bangladesh)	Change	global, annual and seasonal distribution of surface		
		climatic variables – MSL pressure, Sea Surface		
		Temperature (SST), wind, air temperature,		
		humidity and precipitation. Air-masses- Land and		
		ocean air-masses – source regions and large-scale		
		circulation. Climatology of natural disasters –		
		tropical cyclones, nor westers, tornadoes,		
		lightning, floods, droughts and their impacts.		
		Climate models: Nature and applications of		
		climate models. Global warming and its causes-		
		emission of enhanced Greenhouse Gases (ghgs)		
		and sources and sinks of these emissions. Past and		
		future climate change- global, regional & sub-		
		regional.		
		Climate Change Impacts-Potential impacts of		
		global, regional and sub-regional climate change.		
		Physical/dynamical reasoning to explain variability		
		and change in climate.		
		Climate information: products and services		
		specific to application.		

East West University	Environmental	• Introduction to Environmental Engineering: water,			
(Bangladesh)	Engineering, I	health and sanitation, ecology and environment;			
		climate change; biodiversity; contemporary			
		environmental issues.			
		Water Supply Engineering: Water requirement in			
		urban (water demand, population prediction,			
		water demand for street fire hydrant and interior			
		fire protection) and rural communities; the			
		hydrologic cycle and water availability; water			
		supply sources; ground water exploration: aquifer			
		properties and ground water flow, well hydraulics,			
		water well design, drilling, construction and			
		maintenance; shallow hand tube wells, deep tube			
		wells, deep set pumps, pond sand filter, rain water			
		harvesting system and alternative water supplies			
		for problem areas. Surface water collection and			
		transportation; pumps and pumping machineries;			
		water distribution systems; analysis and design of			
		distribution network; fire hydrants; water meters;			
		water loss control (auditing, unaccounted for			
		water, leak detection and water conservation).			
		• Water quality requirements; water treatment:			
		plain sedimentation, coagulation, flocculation,			
		filtration, disinfection; miscellaneous treatment			
		methods; low cost treatment methods			
		(arsenic/iron removal plants etc.) For rural			
		communities; water safety plans.			
National university in	Environmental	Basic elements of the environment and their			
Seoul, South Korea	Engineering	interactions including human impacts are			
		investigated. Numerous factors that cause			
		deterioration of environ- mental quality such as			
		the pollution of air, water, and soil as well as			
		noise, vibration, solid wastes, and hazardous			
		material are considered, and the effects on the			
		human beings and the ecosystem as well as a			

	number of technologies to restore the
	environmental quality are studied. The
	environmental policies and socioeconomic system
	concerned with the prevention and abatement of
	environmental contamination and conservation of
	a healthy ecosystem are also major topics of the
	course work. Studies are not restricted to local or
	regional environmental problems spatially. Global
	issues such as climate change, ozone layer
	destruction, biodiversity and so on are discussed.
International Water Climate Change and	d • Introduction to climate change
Association (IWA) Water in Mountain	s • Impacts of Climate Change on Water Resources
	 Impacts of Climate Change on Water uses
	 Recommendations for Adaptation and Water
	Governance Strategies
	 Risk management
UN CC Climate change: Fro	om • Module 1: What is climate change and how does it
learning to action	affect us?
	 Module 2: How to adapt to climate change?
	 Module 3: How to mitigate climate change?
	 Module 4: How to plan and finance action on
	climate change?
	 Module 5: How do climate change negotiations
	work?
	 Module 6: How to tackle climate change in
	practice?
University of Life Management and	
	Climatology and climate risk assessment ecology,
Sciences in Lublin adaptation to clima	
change	 Air protection and emission modeling,
	Water resource management,
	 Methods of increasing water retention,
	 Protection of plants against weather phenomena,
	 Adaptations of organisms to climate change,
	Green infrastructure and urban adaptation to

		climate change,			
		 Adaptations to climate change in spatial 			
		management,			
		Renewable energy sources			
Cracow University of	Clean air engineering	•			
Technology	Water engineering and	 Designing urban, water and green infrastructure 			
	management	to adapt cities to climate change			
	Renewable energy	Alternative energy sources,			
	sources and municipal	 Sourcing, processing and distribution of energy 			
	infrastructure	from renewable sources			
University of	Water engineering and	Aquatic ecology			
Agriculture in Krakow	management	• Hydrology			
Ateneum University in	Natural aspects of climate	How to talk about climate change			
Gdańsk	change with English	 Environmental aspects of climate change 			
Nature University of	Ecoenergy	Biomass energy			
Poznań		Vegetable energy resources			
		 Ecology and protection of the biosphere 			
		• Hydropower			
		 Wind energy and wind turbines 			
		 Photovoltaics and solar collectors 			
		 Technique and technology of biofuel production 			
		Renewable energy in construction			
		 Designing eco-energy systems 			
	Water engineering and	 Engineering and water management facilities, 			
	management	• Facilities and systems for protection against flood			
		and drought,			
		 Water supply and sewage networks, 			
		 Complex facilities and water-drainage systems, 			
		Hydrotechnical facilities and watercourse			
		regulation,			
		 Systems for rational water management 			
Bialystok University of	Eco energy	Renewable sources and conversion of electricity			
Technology					

Warsaw University of	Water engineering and	Water engineering, water management		
Life Sciences	management	 water and drainage engineering 		
	Renewable energy	Water and sewage management in the enterprise		
	technologies	Renewable and unconventional energy sources		
		 Legal conditions for energy management 		
		Assessment of the efficiency of renewable energy		
		sources		
		Design of renewable energy facilities		
		Climate change		
Collegium Civitas	International and climate	•		
Warsaw	security			
European Social and	Climate and ecology	Climate changes in the past		
Technical University of		Causes and scenarios of climate change		
Servant of God Robert		• The effects of climate change in poland and in the		
Schuman in Radom		world		
		Extreme phenomena		
		Adaptations to climate change		
		Air protection and emission modeling		
		Methods of increasing water retention		
		Renewable energy sources		
		 Financing pro-climate activities 		
		Climate risk management		
Wrocław University	Geography Climate	Climate change - causes and consequences		
	protection and air quality	Air quality management and environmental		
	management	impact assessment		
		Numerical modelling of atmospheric processes		
		Protection and monitoring of the atmosphere		
University of Life	Water engineering and	Water law and administration		
Sciences in Wroclaw	management	 Meteorology and climatology 		
		 Hydrology 		
University of Warmia	Renewable energy	Passive, zero- and plus energy construction		
and Mazury in Olsztyn	sources	Wind energy		
		Hydropower		
		 Harnessing of the sun energy 		

Ecological engineering	• Design of anthropogenic water reservoirs
	 Hydrology and earth sciences
	 Low emission systems of fuels applications
Management of	Environmental effects of mining and energy
renewable and mineral	generation secotrs
resources	Water resources management
Environmental protection	Hydrology
	 Water management in river catchments
	Water engineering
	Water ecosystems
	 Water management in the landscape
Landscape architecture	• Hydrology

Few more details collected via online literature search are summarized below:

1. Delft University of Technology

Online Course on Introduction to Water and Climate:

Water is essential for life on Earth and of crucial importance for society. Water also plays a major role in affecting climate. Its natural cycle, from ocean to atmosphere by evaporation, then by precipitation back to land returning via rivers and aquifers to the oceans, has a decisive impact on regional and global climate patterns.

Learning Outcomes of the module

- The different processes of the global water cycle
- The challenges in better understanding and adapting to the impact of climate change on water for the coming 50 years
- The flows of water and sand in different riverine, coastal and ocean systems
- How to identify mechanisms of climate change and explain the interplay of climate change, sea level, clouds, rainfall and future weather
- Why, when and which engineering interventions are needed in rivers, coasts and urban environments
- Why water for food and water for cities are the main challenges in water management and what the possibilities and limitations of reservoirs and groundwater are to improve water availability

(https://scholarship-positions.com/tu-delft-online-course-introduction-water-climate/2016/07/05/)

2. University of Birmingham, UK

Climate Studies & Meteorology Degrees

Climate studies and meteorology is an interdisciplinary study that focuses on the activity and changes of the atmosphere as well as weather patterns, on the other side. The sub-disciplines of these sciences lead to specializations in observation of the elements that comprise weather and the meteorological phenomena.

This module consists of

- Large-scale climate and weather effects such as El Nino or global warming
- Study about temperature, pressure, wind, humidity and rain

• The changes in latitude, altitude or the interaction between Earth's atmosphere and the oceans

(https://www.mastersportal.com/disciplines/125/climate-studies-meteorology.html)

3. University of British Columbia

They have an action plan called "Climate Action 2020". It includes

• Aims to reduce greenhouse gas emissions by 100 per cent by 2050, to use the university as a lab to develop climate change solutions and to take full account for the costs of its decisions on sustainability.

The UBC experts have been finalized and include the following climate related contents to the UBC graduate curriculum.

- Climate Adaptation and Resilience
- Climate and People
- Climate Economics
- Climate Justice
- Climate Science

(https://www.timeshighereducation.com/student/best-universities/top-universities-climate-action)

- 4. Vrije Universiteit Amsterdam, Netherland
- Included number of environmental areas such as water and climate risk, environmental economics and environmental policy analysis.

(https://www.timeshighereducation.com/student/best-universities/top-universities-climate-action)

- 5. University of Victoria, Canada
- Created a Sustainability Action Plan, which includes measures to reduce greenhouse gas emissions, reduce natural gas consumption and reduce waste.

(https://www.timeshighereducation.com/student/best-universities/top-universities-climate-action)

6. Asian Institute of Technology (AIT)

Department: Water Engineering and Management

Module: CE74.18 Climate Change and Water Resources

Description: The objective of this course is to provide the knowledge and understanding of climate change and its impact on water resources availability, use and demand. This course provides knowledge and skills on modeling tools and methods for climate change projections and impact assessment in water sectors, vulnerability assessment and adaptation strategies in managing water at regional, national and local level.

https://www.ait.ac.th/admissions/eligibility/course-catalogue/set_main/set_wem/

7. University of Southampton

Module: CENV6147 Climate Change, Energy and Settlements

Description: Sustainable development is a major international challenge and relates to historical, environmental and economic changes. This module focuses on the relationships between settlements, resources, climate and energy through history. It introduces students to the basics of human evolution, from the pre-industrial world to today's high fossil fuel society. Building on this knowledge, students will develop ideas and concepts towards sustainable lifestyles and resource and energy efficiency.

Only students enrolled on programme codes 3081MSc Energy and Sustainability, Pathway 3086 Energy Resources and Climate Change and 3081 MSc Energy and Sustainability, Pathway 3087 Energy Environment and Buildings will be permitted to register on this module.

Course Content: This module links the development of society to the surrounding climatic conditions and investigates its use of energy to achieve comfortable living and working conditions in its buildings and settlements. It will comprise the following:

1. An introduction to the Earth's climate system and climatic zones as basis for human activity and settlements.

2. The development of society in relation to the local climatic and topographic conditions, resources availability (food, building material, energy), technical skills and the societal framework.

3. The conditions for development, evolution and collapse of civilizations.

4. The development and organization of human settlements addressing aspects of location, society, advantages to individuals, form, function, design and organization principles.

5. An assessment of population development and its implications on settlements, buildings and resource consumption with particular focus on energy consumption.

6. Discussion of how energy systems contribute to the shaping of society and the conditions that resulted in the agricultural and industrial revolution.

7. An introduction to climate science looking at historical and recent observations, climate modelling and climate change predictions.

8. The assessment of global and regional climate change implications and associated mitigation / adaptation strategies.

9. The concepts of sustainability, ecological and carbon foot printing.

https://www.southampton.ac.uk/courses/modules/cenv6147#syllabus

8. National University of Singapore (NUS)

Postgrad modules: hydraulic engineering & water resources management

Module: CE5315 Climate Science for Engineers

Brief description: This module introduces fundamental mathematical and physical elements of the Earth climate with specific focus on clouds, precipitation, energy budget, planetary boundary layer and extreme weather phenomena. This knowledge is relevant for a better assessment of water and energy resources and impact assessments. Beyond introducing fundamental climatic processes, the module provides methods for the stochastic generation of climatic variables in a stationary and changing climate. It finally discusses broadly issues related to greenhouses gas emissions and future climate projections, outlining causes and potential solutions.

Course Content:

- Introduction to the components of the Earth system atmosphere, oceans, biosphere, cryosphere, pedosphere, humans, carbon cycle. History of climate
- Principles of meteorology. Weather systems. Air masses. Winds. Thermodynamics of the dry and wet atmosphere. Vertical gradients, stability.
- Cloud formation and physics. Precipitation formation, physics and types.
- Stochastic rainfall generators. Alternating renewal process. Neyman-Scott rectangular pulse. Rainfall disaggregation.

- Radiative transfer. Shortwave and longwave radiation. Surface energy fluxes.
- Turbulence, aerodynamic resistance and PBL development. Land-atmosphere feedbacks.
- Extreme weather phenomena. Thunderstorms, Tropical cyclones.
- Numerical Weather Predictions. Meteorological and climate models.
- Climate change and IPCC projections. CO2 emissions and future scenarios. Geoengineering
- Climate downscaling and weather generators.
- Carbon footprints and climate targets.

https://www.eng.nus.edu.sg/cee/graduate/coursework-based-programmes/msc-ce/

9. International Water Association (IWA)

Climate Change and Water in Mountains: A Global Concern

University of Geneva

Target Audience

Professionals and students who wish to go beyond basic notions of climate change and water management. Anyone who seeks to reinforce his or her knowledge in associated areas of climate change in mountain regions, such as adaptation and risk management.

Content

- Introduction to climate change
- Impacts of Climate Change on Water Resources
- Impacts of Climate Change on Water uses
- Recommendations for Adaptation and Water Governance Strategies
- Risk management

Learning Objectives

- By the end of this course, you will be able:
- to define the general concept of climate change in mountain regions
- to understand the concepts associated with climate change such as adaptation and water governance strategies
- to consider the impacts of climate change on water resources in mountain regions
- to identify the impacts of climate change on hydropower, agriculture, aquatic ecosystems and health
- To enumerate risks that can occur in mountain areas and lead to disruptions in water availability and use.

https://iwa-network.org/learn/climate-change-and-water-in-mountains-a-global-concern-2/

2.3 Teaching water-climate change relevant subjects

Prepared by Munkhtsetseg

Table 3:Relevant subjects

	Institute, course	Course objectives	Why is it best practice ?
		Understand the different processes at	It is good teaching source
		play in the global water cycle.	of using the online
			forums to demonstrate
		Identify and describe the flows of	the how climate change
		water and sand in different riverine,	affecting to the water to
	Delft University of	coastal and ocean systems.	students who has
	Technology, the	Identify mechanisms of climate	different background.
	Netherlands	change and explain the interplay	
		between climate change, sea level,	- Video sessions
		clouds, rainfall and future weather.	(clips, movies)
		·	
	Course on	Explain why, when and which	
1	Introduction to Water	engineering interventions are needed	
	and climate	in rivers, coastal and urban	
		environments.	
	https://online-	Euclain whereaster for food and water	
	learning.tudelft.nl/cou	Explain why water for food and water for cities are the main challenges in	
	rses/introduction-to-	water management and propose	
	water-and-climate/	solutions.	
		solutions.	
		Explain and confront the challenges	
		in better understanding and adapting	
		to the impact of climate change on	
		water over the coming 50 years.	
	UN CC:Learn	Module 1: What is climate change	It is also good idea that
		and how does it affect us?	participants will develop
	Course on5 Climate	Module 2: How to adapt to climate	a concrete action plan or
2	change: From learning	change?	project to tackle climate
	to action	Module 3: How to mitigate climate	change.
		change?	
	https://www.uncclear	Module 4: How to plan and finance	- Work on real-life

n.org/courses/climate	action on climate change?	climate change
-change-from-	Module 5: How do climate change	issues
learning-to-action-	negotiations work?	
coming-soon/	Module 6: How to tackle climate	
	change in practice?	

2.4 Water quality monitoring

Prepared by Slwomir Kalinowski and Zakhar Maletzkyi.

The **pdf** file containing the details is attached separately.

3.1 University – Enterprise collaborations

Prepared by Katarzyna Glinska-Lewczuk

The integration of science, technology and innovation policies into water resources development strategies, as well as its combination with institutional and organizational changes, can valuably contribute to raising efficiency, improving resilience, and fostering the transition to sustainability within and beyond the water sector. Such achievements offer new opportunities and responses to support sound decision-making in the governance and management of water resources while minimizing the impact of climate change. Innovation provides more affordable and efficient technological tools, enables their implementation, and is indeed central to translating water-related scientific knowledge and technological know-how into useful processes, services and employment [UNESCO, UN-Water, 2020: United Nations World Water Development Report 2020: Water and Climate Change, Paris, UNESCO]

Science, technologies and innovation are rapidly evolving and continue to support a number of water resources management activities, including:

- i. overall assessment and monitoring of water resources and hydrological processes;
- ii. conservation, recovery and reuse of water resources;
- iii. adaptation of infrastructures;
- iv. cost reduction in treatment and distribution processes;
- v. efficiency of water supply delivery and use; and
- vi. access to safe drinking water and sanitation.

Several innovations in the water sector have over the past years deepened our understanding of climate-related challenges, and provided new ways to adapt in a flexible way to climate change and to mitigate greenhouse gas (GHG) emissions.

In 2003, a global initiative called the Dialogue on Water and Climates ought to bridge the knowledge and communication gaps between water managers and climate scientists, and to promote waterrelated adaption measures through a series of 18 multi-stakeholder dialogues at regional, national and basin levels, collectively highlighting the need to prepare for and adapt to the effects of climate variability and the likely implications of climate change.

Different sectors and stakeholders can face a variety of challenges with respect to both water management and climate change adaptation and mitigation. The often strong interlinkages across the water–climate–energy–food–environment 'nexus' can lead to synergies and cross-benefits in some cases, and in others impose difficult choices and trade-offs.

Interdisciplinary approaches are therefore required to ensure that the various perspectives and knowledge from different disciplines feed into the analyses and inform the decision-making process. The examples of conservation agriculture and sustainable land management clearly demonstrate how locally applied soil management techniques can have positive effects on water availability and flood control across a catchment (adaptation), while at the same time enhancing soil carbon storage (mitigation).

The need for greater cooperation between the water and climate communities exists well beyond the realm of scientific research. The disconnect remains abundantly clear at the policy level as well – most obviously in the fact that the term 'water' is completely absent from the Paris Agreement (UNFCCC, 2015). On the one hand, it is imperative that the climate change community, and climate negotiators in particular, give greater attention to the role of water and recognize its central

importance in addressing the climate change crisis. On the other hand, it is equally (if not more) essential that the water community focuses its efforts to promote the importance of water in terms of both adaptation and mitigation, develop concrete water-related project proposals for inclusion in NDCs, and strengthen the means and capacities to plan, implement and monitor water-related activities in NDCs (prior to the 2020 NDC review and beyond)

Collaboration can achieve many beneficial outcomes for adaptation in areas such as stakeholder participation and buy-in, financing and information availability. Lack of collaboration may result in maladaptation as the scales of the response will not match the scales of the risk [Burton, D. 2016: Collaboration and partnerships for adaptation. CoastAdapt, National Climate Change Adaptation Research Facility, Gold Coast.].

- Collaboration occurs when several parties come together to work through and implement a collective solution to a multi-dimensional problem.
- Adaptation is well-suited to a collaborative approach because of the wide range of expertise required, the need for stakeholder engagement to ensure successful outcomes, and the wide spatial scales and long timeframes involved.
- Useful collaboration for adaptation can take place within organisations such as small businesses and local councils, between organisations, and between an organisation and its stakeholders.
- Collaboration can take place around financing, implementation, knowledge generation, monitoring and evaluation. It can help to realise any opportunities arising from climate change, as well as to address the risks.

There are shining examples of fruitful collaboration between universities, industry partners and startups. Many ideas from research in universities are put to use through collaboration between universities and firms. Others reach the market through licensing or start-up companies. A multistakeholder group of experts in technology transfer recently met in Tianjin, People's Republic of China, at the World Economic Forum's Annual Meeting of the New Champions, and identified a number of common challenges and opportunities that warrant further exploration and discussion (fig 1.)

Nature Index

Definition "Research collaboration" indicates a collaboration between two or more organizations (at least one university and one private enterprise) that has resulted in a co-authored scientific publication. Collaborations can be studied both at the level of the organizations involved (university-enterprise) and at the level of the scientific sector involved (SDS-enterprise). By university-enterprise collaboration we mean a research collaboration between a university and a private enterprise that has resulted in exactly one co-authored publication in the dataset under consideration. Research partnerships between industry and academia have more than doubled in five years. (based on Academic-Corporate co-authored publication growth 2015-2019)

Academia expectations

Figure 1: Industry and academia expectations about challenges and opportunities that warrant further exploration and discussion between universities, industry partners and start-ups

The tables show leading institutions ranked by their fractional count (FC) in Earth and environmental sciences from 2015 to 2017. Also listed are institutions' total number of Earth and environmental sciences articles in the Nature Index (AC 2015–2017) and the proportion of each institution's FC in Earth and environmental sciences relative to total FC from 2015 to 2017 (% E&E 2015–2017).

Table 4: Top 20 institutions in Earth & Environmental Sciences in Europe [source; https://www.natureindex.com/supplements/nature-index-2018-earth-and-environmental-sciences/tables/europe]

Rank	Institution	Country/Region	FC 2015- 2017	AC 2015- 2017	% E&E 2015- 2017
1	Helmholtz Association of German Research Centres	Germany	401.26	1,135	25.8%
2	French National Centre for Scientific Research (CNRS)	France	303.56	2,026	13.5%
3	<u>Swiss Federal Institute of Technology</u> <u>Zurich (ETH Zurich)</u>	Switzerland	245.26	652	22.1%
4	<u>Utrecht University (UU)</u>	Netherlands	102.05	321	27.4%
5	<u>University of Oxford</u>	United Kingdom (UK)	101.64	347	7.7%
6	Max Planck Society	Germany	93.19	369	4.2%

Rank	Institution	Country	/Region	FC 2015- 2017	AC 2015- 2017	% E&E 2015- 2017
7	National Institute of Geophysics and Volcanology (INGV)	Italy		92.38	203	99.4%
8	<u>University of Leeds</u>	United (UK)	Kingdom	87.97	330	37.9%
9	<u>University of Cambridge</u>	United (UK)	Kingdom	84.17	294	6.6%
10	<u>University of Bristol (UoB)</u>	United (UK)	Kingdom	83.15	285	20.2%
11	Imperial College London (ICL)	United (UK)	Kingdom	80.75	331	11.3%
12	Swiss Federal Institute of Aquatic Science and Technology (EAWAG)	Switzerl	and	75.91	228	86.6%
13	Leibniz Association	German	у	75.61	298	12.4%
14	Spanish National Research Council (CSIC)	Spain		73.62	302	11.6%
15	Technical University of Denmark (DTU)	Denmar	k	67.78	168	29.0%
16	Institute of Research for Development (IRD)	France		63.02	832	70.8%
17	University of Copenhagen (UCPH)	Denmar	k	61.47	230	14.3%
18	Stockholm University	Sweden		59.47	223	23.6%
19	Paris Diderot University (Paris 7)	France		56.68	334	33.2%
20	<u>University of Oslo (UiO)</u>	Norway		53.31	216	31.2%

The table shows the top collaborating partners ranked by their bilateral collaboration score (CS) in Earth and environmental sciences for the three-year period from 2015 to 2017. The CS sums the fractional count of collaborative papers from the two partnering institutions. Also shown is the article count (AC) of collaborative articles from the two partnering institutions over the same period.

Table 5: Top 40 (from 100) collaborations in Earth & Environmental Sciences

Rank	Institution	CS 2015- 2017	Institution	CS 2015- 2017	Bilateral CS 2015- 2017	AC 2015- 2017
1	<u>Chinese Academy of</u> <u>Sciences (CAS), China</u>	188.89	<u>University of Chinese</u> <u>Academy of Sciences</u> <u>(UCAS), China</u>	61.83	250.72	341
2	California Institute of	93.85	National Aeronautics	98.05	191.91	517

Rank	Institution	CS 2015- 2017	Institution	CS 2015- 2017	Bilateral CS 2015- 2017	AC 2015- 2017
	<u>Technology (Caltech).</u> <u>United States of America</u> <u>(USA)</u>		and Space Administration (NASA), United States of America (USA)			
3	<u>French National Centre</u> <u>for Scientific Research</u> <u>(CNRS), France</u>	110.74	<u>Institute of Research for</u> Development (IRD). <u>France</u>	62.03	172.77	825
4	National Oceanic and Atmospheric Administration (NOAA), United States of America (USA)	83.62	<u>University of Colorado</u> <u>Boulder (CU-Boulder),</u> <u>United States of America</u> <u>(USA)</u>	64.06	147.68	354
5	<u>Nanjing University (NJU).</u> <u>China</u>	67.59	<u>Tongji University, China</u>	69.23	136.82	219
6	<u>French National Centre</u> <u>for Scientific Research</u> <u>(CNRS), France</u>	75.68	<u>Paris Diderot University</u> <u>(Paris 7), France</u>	56.15	131.83	331
7	<u>French National Centre</u> <u>for Scientific Research</u> <u>(CNRS), France</u>	63.90	<u>Pierre and Marie Curie</u> <u>University (UPMC) -</u> <u>Paris 6, France</u>	32.90	96.80	440
8	National Aeronautics and Space Administration (NASA), United States of America (USA)	58.37	<u>University of Maryland,</u> <u>College Park (UMCP),</u> <u>United States of America</u> <u>(USA)</u>	30.91	89.28	229
9	National Aeronautics and Space Administration (NASA), United States of America (USA)	46.63	<u>University of Colorado</u> <u>Boulder (CU-Boulder),</u> <u>United States of America</u> <u>(USA)</u>	42.38	89.01	249
10	<u>Chinese Academy of</u> <u>Sciences (CAS), China</u>	46.58	Peking University (PKU), China	37.33	83.91	233
11	<u>Beijing Normal</u> <u>University (BNU), China</u>	36.37	<u>Chinese Academy of</u> <u>Sciences (CAS), China</u>	41.14	77.51	184
12	<u>Chinese Academy of</u> <u>Sciences (CAS), China</u>	35.79	<u>University of Science and</u> <u>Technology of China</u> (USTC), China	36.25	72.04	120
13	National Aeronautics and Space Administration (NASA), United States of America (USA)	32.34	National Oceanic and Atmospheric Administration (NOAA), United States of America (USA)	39.47	71.81	194
14	Swiss Federal Institute of Aquatic Science and	47.14	<u>Swiss Federal Institute of</u> <u>Technology Zurich (ETH</u>	24.64	71.78	111

Rank	Institution	CS 2015- 2017	Institution	CS 2015- 2017	Bilateral CS 2015- 2017	AC 2015- 2017
	<u>Technology (EAWAG).</u> <u>Switzerland</u>		Zurich), Switzerland			
15	National Aeronautics and Space Administration (NASA), United States of America (USA)	55.51	<u>Universities Space</u> <u>Research Association</u> (USRA), United States of America (USA)	9.44	64.95	154
16	<u>Chinese Academy of</u> <u>Sciences (CAS), China</u>	32.65	<u>Tsinghua University</u> (<u>TH), China</u>	30.97	63.62	164
17	National Aeronautics and Space Administration (NASA), United States of America (USA)	32.75	<u>University of California</u> Los Angeles (UCLA). <u>United States of America</u> (USA)	26.41	59.16	181
18	<u>French National Centre</u> <u>for Scientific Research</u> <u>(CNRS), France</u>	37.75	<u>Grenoble Alpes</u> <u>University (UGA), France</u>	21.23	58.98	240
19	<u>Atomic Energy and</u> <u>Alternative Energies</u> <u>Commission (CEA),</u> <u>France</u>	23.36	<u>French National Centre</u> <u>for Scientific Research</u> <u>(CNRS), France</u>	34.72	58.08	230
20	<u>Johns Hopkins University</u> (<u>JHU), United States of</u> <u>America (USA)</u>	17.98	National Aeronautics and Space Administration (NASA), United States of America (USA)	38.00	55.98	150
21	<u>NERC National</u> <u>Oceanography Centre</u> (NOC), United Kingdom (UK)	26.69	<u>University of</u> <u>Southampton (Soton).</u> <u>United Kingdom (UK)</u>	27.54	54.24	132
22	<u>French National Centre</u> <u>for Scientific Research</u> (CNRS), France	31.78	<u>University of Lyon,</u> <u>France</u>	21.65	53.43	179
23	<u>France Ministry of</u> <u>Ecology, Sustainable</u> <u>Development and</u> <u>Energy, France</u>	18.26	<u>French National Centre</u> <u>for Scientific Research</u> <u>(CNRS), France</u>	32.93	51.19	280
24	<u>Lawrence Berkeley</u> <u>National Laboratory</u> (LBNL), United States of <u>America (USA)</u>	24.00	<u>University of California</u> <u>Berkeley (UC Berkeley),</u> <u>United States of America</u> <u>(USA)</u>	24.02	48.02	77
25	National Aeronautics and Space Administration (NASA), United States of America (USA)	32.43	<u>Science Systems and</u> <u>Applications, Inc. (SSAI),</u> <u>United States of America</u> <u>(USA)</u>	15.41	47.84	85

Rank	Institution	CS 2015- 2017	Institution	CS 2015- 2017	Bilateral CS 2015- 2017	AC 2015- 2017
26	<u>École Normale</u> <u>Supérieure (ENS Paris),</u> <u>France</u>	15.90	<u>French National Centre</u> <u>for Scientific Research</u> <u>(CNRS), France</u>	30.69	46.59	180
27	<u>French National Centre</u> <u>for Scientific Research</u> <u>(CNRS), France</u>	31.81	<u>National Museum of</u> <u>Natural History (MNHN).</u> <u>France</u>	13.96	45.77	184
28	National Aeronautics and Space Administration (NASA), United States of America (USA)	25.86	<u>Southwest Research</u> <u>Institute (SwRI), United</u> <u>States of America (USA)</u>	19.82	45.69	142
29	<u>Centre National d'Etudes</u> <u>Spatiales (CNES), France</u>	14.97	<u>French National Centre</u> <u>for Scientific Research</u> <u>(CNRS), France</u>	29.78	44.75	302
30	<u>French National Centre</u> <u>for Scientific Research</u> <u>(CNRS), France</u>	27.79	<u>University of Toulouse,</u> <u>France</u>	15.69	43.48	259
31	<u>French National Centre</u> <u>for Scientific Research</u> <u>(CNRS), France</u>	24.51	<u>University of Lorraine</u> <u>(UL), France</u>	18.76	43.28	116
32	<u>Beijing Normal</u> <u>University (BNU), China</u>	20.87	<u>Tsinghua University</u> (<u>TH), China</u>	22.26	43.13	129
33	<u>Columbia University in</u> <u>the City of New York</u> (CU), United States of <u>America (USA)</u>	24.96	National Aeronautics and Space Administration (NASA), United States of America (USA)	17.90	42.86	130
34	<u>French National Centre</u> <u>for Scientific Research</u> <u>(CNRS), France</u>	25.11	<u>University of Versailles</u> <u>Saint-Quentin-en-</u> <u>Yvelines (UVSQ), France</u>	16.31	41.41	226
35	<u>French National Centre</u> <u>for Scientific Research</u> <u>(CNRS), France</u>	26.24	<u>University of Savoy.</u> <u>France</u>	14.49	40.73	182
36	<u>French National Centre</u> <u>for Scientific Research</u> <u>(CNRS), France</u>	9.60	National Aeronautics and Space Administration (NASA), United States of America (USA)	30.27	39.87	197
37	<u>Peking University (PKU),</u> <u>China</u>	15.63	<u>Tsinghua University</u> (<u>TH), China</u>	24.08	39.71	135
38	<u>Beijing Normal</u> <u>University (BNU), China</u>	23.12	<u>Peking University (PKU).</u> <u>China</u>	16.57	39.69	134

Rank	Institution	CS 2015- 2017	Institution	CS 2015- 2017	Bilateral CS 2015- 2017	AC 2015- 2017
39	National Aeronautics and Space Administration (NASA), United States of America (USA)	19.43	University of California Berkeley (UC Berkeley), United States of America (USA)	20.22	39.65	102
40	<u>Chinese Academy of</u> <u>Sciences (CAS), China</u>	19.56	<u>Nanjing University (NJU).</u> <u>China</u>	20.09	39.65	9

Example: lessons learnt from Italy

University-industry research collaborations in Italy (by Giovanni Abramo: University-industry research collaboration: a model to assess university capability [https://arxiv.org/ftp/arxiv/papers/1811/1811.01763.pdf])

The research collaborations for **the 2001-2003** by single university shows that of the 68 universities in Italy (considered in the survey) with research personnel in the hard sciences SDSs, 10 do not show any collaborations with the private sector. Half of the universities together produce only 13% of the total collaborations, while three universities (Bologna, Milan and Padua) produce 20% of the total, with over 100 collaborations each. These three universities represent 15% of the total research staff employed in Italian universities, for the 141 hard sciences SDSs under study. Five very small universities (Scuola Superiore Sant'Anna of Pisa, University of Reggio Calabria "Mediterranean", University of Benevento "Sannio", University of Teramo, University of Viterbo "Tuscia") bring up the rear for number of collaborations per university.

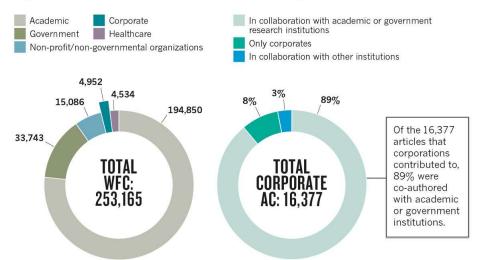
Only 2 of the top 10 universities for number of collaborations are located in southern Italy (Naples and Catania), while 3 are located in central Italy (Rome "La Sapienza", Pisa, Florence); the other 6 are located in the north. Aggregating the data by region we can get a better view of the correlation between university location and intensity of university collaboration with the private sector:

- more than half of the total of collaborations (55.9%) involve universities from northern Italy,
- with universities from central Italy following (26.5% of total collaborations)
- and the south having the smallest 9 share (15.8% of collaborations).

These empirical results show with certainty that:

i) the universities most active in collaborations with private enterprises are those situated in the northern Italy, which is historically more industrially developed than the remainder of the nation;

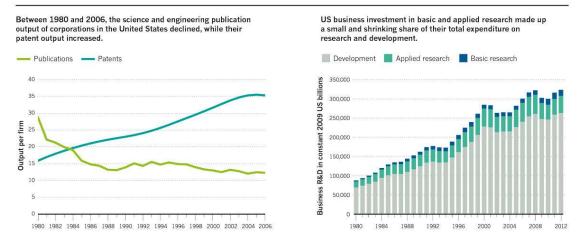
ii) number of collaborations is strongly correlated to size of the university.


Concluding remark:

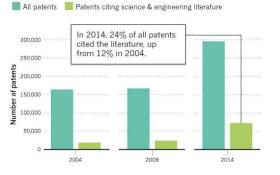
The results support the hypothesis that size and geographic location of a university are the first determinants in its ability to establish collaborations with private research partners.

CORPORATE PARTNERS

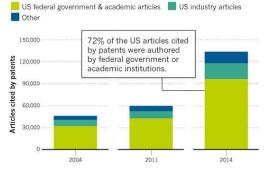
Corporations contributed only 2% to the authorship of papers in the Nature Index between 2012 and 2016, as measured by weighted fractional count (WFC). The majority of articles (AC) authored by corporations in the index were in collaboration with academic or government research institutes.


The number of 27,500 partnerships between 25,000 a corporate institution and an academic or 22,500 government institution in the index has more Number of bilateral partnership: 20,000 than doubled over the past five years. 17,500 15,000 All subjects 12,500 Chemistry Life sciences 10,000 Physical sciences Earth & environmental 7,500 sciences 5,000 2,500 0 2013 2014 2015 2016 2012

Since 2012, corporate institutions have been collaborating more with academic and government research institutes on international papers, but less on domestic papers.



DROP IN OUTPUT



SCIENCE-DRIVEN INNOVATION

Patents in the United States increasingly cite the science and engineering literature.

US patents also cite a larger share of the literature. Most of the US papers cited are by government and academic researchers.

Each year, the Nature Index publishes tables based on counts of high-quality research outputs in the previous calendar year. Users please note:

- 1. The data behind the tables are based on a relatively small proportion of total research papers, they cover the natural sciences only and outputs are non-normalized (that is, they don't reflect the size of the country or institution, or its overall research output).
- 2. The Nature Index is one indicator of institutional research performance. The metrics of Count and Share used to order Nature Index listings are based on an institution's or country's publication output in 82 natural-science journals, selected on reputation by an independent panel of leading scientists in their fields.
- 3. Nature Index recognizes that many other factors must be taken into account when considering research quality and institutional performance; Nature Index metrics alone should not be used to assess institutions or individuals.
- 4. Nature Index data and methods are transparent and available under a creative commons licence at **natureindex.com**.

The table shows the top 10 rising countries/territories in Earth and environmental sciences, ranked by change in adjusted Share* from 2015 to 2019. Also listed are the country's Share and Count in 2019, percentage change in adjusted Share from 2015 to 2019, and global rank in the 2020 annual tables.

Table 6: Top 10 rising countries/territories in Earth and environmental sciences

Rank	Country / Territory	Share 2019	Count 2019	Change in Adjusted Share* 2015–2019	Change in Adjusted Share* 2015–2019 (%)	2020 Annual Tables Rank
1	<u>China</u>	1630.63	2331	794.59	95.0 %	2
2	<u>Norway</u>	98.84	261	27.13	37.8 %	13
3	South Korea	96.25	186	11.77	13.9 %	14
4	Czech Republic	29.55	86	9.71	48.9 %	27
5	<u>Austria</u>	39.53	150	9.64	32.3 %	22
6	<u>Singapore</u>	48.78	120	8.39	20.8 %	19
7	<u>Brazil</u>	37.20	104	7.31	24.5 %	23
8	Iran	8.30	23	6.75	437.1 %	36
9	Saudi Arabia	22.71	57	6.16	37.2 %	28
10	<u>Colombia</u>	9.08	33	4.94	119.2 %	35

Table 7: Top 40 Institutions in Europe in - Earth & environmental sciences

2019	Institution	Share 2018	Share 2019	Count 2019	Change in Adjusted Share 2018- 2019 *
1	Helmholtz Association of German Research Centr Germany	es, 147.82	119.54	403	-21.6%
2	French National Centre for Scientific Resear (CNRS), France	ch 106.91	101.43	790	-8.0%
3	Swiss Federal Institute of Technology Zurich (E Zurich), Switzerland	ГН 92	90.13	236	-5.0%
4	University of Oxford, United Kingdom (UK)	36.71	42.52	158	12.3%
5	University of Cambridge, United Kingdom (UK)	42.15	36.89	140	-15.1%
6	Utrecht University (UU), Netherlands	35.17	36.67	130	1.1%
7	Max Planck Society, Germany	35.58	34.3	157	-6.6%
8	University of Leeds, United Kingdom (UK)	30.42	32.86	134	4.7%
9	Imperial College London (ICL), United Kingdo (UK)	om 32.94	32.24	121	-5.1%
10	Spanish National Research Council (CSIC), Spain	23.08	28.57	130	20.0%

2019	Institution	Share 2018	Share 2019	Count 2019	Change in Adjusted Share 2018- 2019*
11	University of Bristol (UoB), United Kingdom (UK)	28.42	27.19	101	-7.3%
12	University of Oslo (UiO), Norway	20.98	26.44	90	22.2%
13	Leibniz Association, Germany	29.31	25.64	118	-15.2%
14	Swiss Federal Institute of Technology Lausann (EPFL), Switzerland	ie 14.52	24.72	80	65.0%
15	Swiss Federal Institute of Aquatic Science an Technology (EAWAG), Switzerland	d 24.4	24.2	74	-3.8%
16	University of Copenhagen (UCPH), Denmark	14.65	23.26	84	53.9%
17	Institute of Research for Development (IRD), Franc	e 21.35	21.75	363	-1.2%
18	University College London (UCL), United Kingdor (UK)	m 19.8	20.54	97	0.6%
19	University of Bergen (UIB), Norway	13.12	20.01	91	47.9%
20	Aarhus University (AU), Denmark	14.03	19.92	77	37.7%
21	University of Exeter, United Kingdom (UK)	21.44	19.16	71	-13.3%
22	Wageningen University & Research (WUR Netherlands), 20.73	18.83	70	-11.9%
23	University of Southampton (Soton), United Kingdon (UK)	m 18.17	18.72	86	-0.1%
24	Russian Academy of Sciences (RAS), Russia	17.86	18.72	78	1.6%
25	Delft University of Technology (TU Delft Netherlands), 21.56	17.88	61	-19.6%
26	National Institute of Geophysics and Volcanolog (INGV), Italy	y 24.46	17.88	59	-29.1%
27	University of Reading, United Kingdom (UK)	10.8	17.54	77	57.6%
28	University of Liverpool, United Kingdom (UK)	12.7	17.27	54	31.9%
29	University of Bern (UniBE), Switzerland	15.8	17.2	71	5.5%
30	The University of Edinburgh, United Kingdom (UK)	19.97	16.84	67	-18.2%
31	Stockholm University, Sweden	14.81	16.73	79	9.5%
32	University of Bayreuth (UBT), Germany	14.75	16.52	39	8.6%
33	University of Paris, France	18.24	16.48	123	-12.4%
34	Technical University of Denmark (DTU), Denmark	21.47	14.97	60	-32.4%
35	Durham University, United Kingdom (UK)	13.65	14.68	74	4.3%

2019	Institution	Share 2018	Share 2019	Count 2019	Change in Adjusted Share 2018- 2019*
36	University of Bremen (Uni Bremen), Germany	24.84	14.3	57	-44.2%
37	University of Münster (WWU), Germany	18.02	14.12	34	-24.1%
38	The University of Manchester (UoM), (UK)	18.7	14.02	57	-27.3%
39	NERC British Antarctic Survey (BAS), (UK)	10.85	13.63	47	21.8%
40	Ghent University (UGent), Belgium	16.61	13.39	42	-21.8%

Table 8: Top 10 Institutions in Poland in - Earth & environmental sciences

2019	Institution	Share 2018	Share 2019	Count 2019	Change in Adjusted Share 2018- 2019*
1	University of Warsaw (UW), Poland	2.5	2.65	6	2.7%
2	Polish Academy of Sciences (PAS), Poland	2.43	2.25	20	-10.2%
3	University of Warmia and Mazury in Olsztyn (UWM), Poland	-	1.29	3	N/A
4	University of Gdańsk (UG), Poland	1.35	1.22	2	-12.1%
5	University of Silesia (US), Poland	1.05	1.14	2	5.4%
6	Gdańsk University of Technology (GUT), Poland	1.17	0.83	1	-30.7%
7	Silesian University of Technology (SUT), Poland	0.05	0.8	1	1,451.3%
8	AGH University of Science and Technology (AGH UST), Poland	0.39	0.71	4	75.8%
9	Wrocław University of Environmental and Life Sciences, Poland	1.5	0.5	1	-67.7%
10	Medical University of Gdańsk (MUG), Poland	-	0.48	2	N/A

3.1.1 Financing CC and water projects in EU

Tackling the global CC and water challenges requires different forms of university-enterprise collaborations for maximising the types and number of partners involved. It allow for implementation of a larger range of types of actions from development of academic and applied research, innovative solutions, including collaboration with enterprises in projects, transfer of innovation to enterprises, addressing the science – policy interface, while having better access to research infrastructures and connections to implementation tools (financial, regulatory), demonstration and training.

Co-funded by the Erasmus+ Programme of the European Union

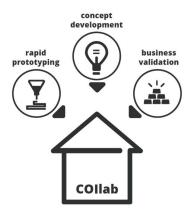
It provides the coverage of actions needed, the necessary long-term flexibility and the possibility for rapid integrating a larger range of activities devoted to the achievement of proposed targets, in close cooperation with ad-hoc stakeholders, who would be associated as partners for achieving specific proposed objectives and targets. If sufficiently flexible, it could allow a broader stakeholder engagement, by the use of different financial programmes (e.g. structural funds, regional specialization) and different collaboration agreement models designed explicitly for the different communities.

Europe boasts a wealth of experience in collaboration, innovation and the creation of proven solutions in addressing past and current CC and water challenges. The EU's has a leading role as a global actor by supporting regional and international cooperation, to address water as a path to achieving the UN SDGs. By placing the engagement of civil society at the centre of its action, the partnership expects to deliver true progress and leverage research and innovation to generate green growth. EUdelivers sustainable financing opportunities and create more impacts by accelerating the application for research results for policy implementation.

	Public – Public Partnerships	Public –	EIT	Other
		Private	instruments	Instruments
		Partnerships		
Currently	Water JPI & its Eranet	CPPP SPIRE	KIC Climate	EUREKA,
active	Cofunds (WaterWorks2014,	(via	(water	COST
partnerships	2015, 2017,	Water	services	Association
	AquaticPollutants)	Europe)	component	
	Articles 185 - PRIMA, BONUS			

Table 9: Current EU partnership landscape following Horizon 2020 (EC, 2019)

3.1.2 Example of project on University-Enterprise Collaboration (Erasmus +)


The Open Innovation Platform for University-Enterprise Collaboration is an collaborative educational project funded by the Erasmus+ Program of the European Union. OIPEC means to collect the best practices in European university-enterprise collaborations and transfer them to the Russian and Chinese beneficiaries.

The ultimate goals of the project are:

the creation of a platform that supports partnerships between universities and enterprises by providing easy access to universities' expertise for small and medium enterprises

the increase of the collaborative activities between universities and enterprises, with the aim of generating novel products/services or improving existing ones

The platform consists of three main pillars:

1. arranging a training course and an executive program to improve competences of enterprises' staff in innovation management and new product/service development;

2. establishing and managing the "Collaborative Open Innovation laboratories" (COILabs), integrated facilities at partner universities with the following functional areas:

- Concept development area, centered on design thinking and raw prototyping
- Rapid prototyping area, providing both design and operational skills
- Entrepreneurial area, to support the development and validation of business concepts

3. sharing the expertise acquired among European, Russian and Chinese universities.

3.1.3 Best practices on CC water (source: Erasmus+)

Erasmus + collaboration projects on CC and water

Key word: 110 PROJECTS FOR KEYWORD: WATER CLIMATE CHANGE

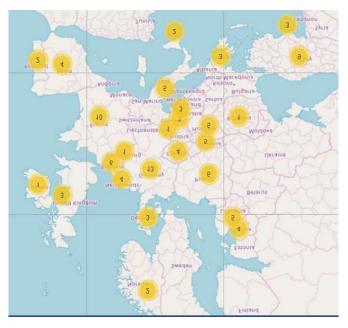


Figure 2: Number of Erasmus + projects related to "water and climate change" by European countries

Co-funded by the Erasmus+ Programme of the European Union

Table List of projects funded by ERASMUS+ FOR KEYWORD: WATER CLIMATE CHANGE. Category: Cooperation for innovation and the exchange of good practices Practical & reusable resources for the practitioners

[https://ec.europa.eu/programmes/erasmus-

plus/projects_en#search/result/keyword=water%2520climate%2520change&categories[0]=Practical %2520%2526%2520reusable%2520resources%2520for%2520the%2520practitioners&categories[1]= Partnerships%2520and%2520cooperations]

	Project title	Description	Туре
	No		
1	Water	Our most important objectives are raising	Key Action: Cooperation
	management	awareness among our students about the	for innovation and the
	and climate	challenges posed by climate change in the	exchange of good practices
	change <u>2018-1-</u>	next few decades and teaching them the	Action Type: School
	<u>NL01-KA229-</u>	necessary skills to fully comprehend the issues	Exchange Partnerships
	<u>039027</u>	and to think in terms of solutions.	
		Dutch and French students of secondary	Assignment Water and
		schools aged 13/14 years, work closely	climate change in France
		together to get an idea of what climate	and the Netherlands
		change actually entails for their respective	
		countries and the significance of water	
		management.	
		The students trips to Amsterdam (city on	
		wooden poles), to the mills at Kinderdijk, to	
		the dunes and beaches in both countries and	
		to Mont Saint Michel (tidal island). This end	
		product will be shared within the school	
		(curriculum of other forms, profile papers)	
		and outside the school (website, Facebook	
		page school, vlog, school partnership). The	
		information gathered within this project	
		allows these students to have a better	
		understanding of the problems concerning	
		climate change, an inevitable issue for our	
		teenagers' future. Example of an assignment	
2	Citizen and	The project aims to build and share the	Practical & reusable

	Public	knowledge of citizens in the field of common	resources for the
	Expertise to	good water and climate risk.	practitioners
	-	-	
	Restore Water	The project will establish a structured	Results
	Cycles and	partnership between the French, Slovak and	
	Climate	Great Britain citizens. It reinforces in the West	Restoring water to
	<u>2017-1-FR01-</u>	and East of Europe the European network of	preserve our climate
	<u>KA204-037471</u>	citizens and public experts of the common	Manual
	https://www.w	good water initiated three years on	
	aterways.world	sustainable development and social, economic	Manual Obnova klimy
	/cgcw/	and environmental water. It supports analyses	
		and auditing systems of the national policies	Formation en ligne Eau et
		by the participating citizens, their pooling,	Climat – Fr
		local and European actions of training,	
		reflections and exchanges. This project will	Water and Climate on-line
		lead to empowerment of citizens and local	course - En
		communities, encourage citizens and public	
		powers to mobilize and act as professionals,	Voda a klíma on-line kurz -
		citizens or elected representatives for a new	SI
		paradigm of water and climate change. It will	Référentiel Elu.es et
		influence new water policies to prevent	Citoyen.nes
		climate risk by engaging citizens of local	
		communities, their communities and water	
		managers together.	
3	Environmental	"Environmental Learning Illustrated"	Key Action: Cooperation
	Learning	developed an online interactive learning	for innovation and the
	Illustrated	platform for participants to learn about the	exchange of good practices
	http://www.illu	cause of climate change and potential	Action Type: Strategic
	strated-	solutions according to four main themes:	Partnerships for adult
	climate.eu	energy and climate change, food, transport	education
		and consumption and waste. These four main	
		themes also included related topics such as	Results
		climate justice, water consumption and	
		environmental refugees. The main result of	E-learning programme
		this project was the creation of an e-learning	
		platform that included an e-learning	E-learning module, online-

		programme with four modules, a graphic	training, MOOC
		novel and 63 illustrations to convey the most	
		important themes and make the learning	
		easier and more fun for participants.	
		The modules were: "Energy and Climate	
		Change", "Food", "Transport" and "Lifestyle".	
		The modules included subtopics such as	
		"climate justice", "biodiversity" and "water	
		conservation". The programme included an	
		initial test for participants to understand their	
		initial knowledge in the subject and a test at	
		the end of each module for participants to	
		understand their learning outcome. Each	
		module also included practical actions that	
		participants can take to reduce their impact	
		on the environment such as saving energy and	
		resources.	
4	Adaptive	The project aims at building capacity at	Key Action: Cooperation
	learning	universities in Ukraine and Russia for	for innovation and the
	environment	improving the educational level of society in	exchange of good practices
	for competence	the area of local weather, air quality and	Action Type: Capacity
	in economic	climate change impacts on modern life	Building in higher
	and societal	towards more resilient social and economic	education
	impacts of local	development.	
	weather, air	Objectives: • To develop educational content	Results
	quality and	for the learning environment on economic	Algorithm for building
	climate	and societal impacts of local weather, air	individual learning tracks
	561975-EPP-1-	quality and climate targeted at university	Teaching aid
	2015-1-FI-	students, hydrometeorology professionals,	"Methodological
	ЕРРКА2-СВНЕ-	and managers at weather-sensitive	Recommendations on
	JP	enterprises and public bodies• To develop	Practical Works for
	http://e-	hardware and software components of the	Students in
	impact.net/	learning environment and integrate them with	Zoometeorology",
		educational content• To test the integrated	Monograph "Climatic Risks
		learning environment in a university,	for Functioning of
			1

		professional update, and sectoral settings• To	Economic Sectors in
		design a commercialisation strategy for the	Ukraine under the Climate
		adaptive integrated learning environment	Change", Teaching aid
		system.	"Automated Monitoring
		Impacts: • An adaptive learning environment	and Assessment of
		will be developed allowing various types of	Atmospheric Air Quality",
		learners to increase competence in the field of	Textbook "Methods for
		local weather, air quality and climate impacts	Applied Systems Analysis in
		on economy and society• The Ukrainian and	Hydrometeorology", 701
		Russian consortium universities will become in	р., 2017
		a position to commercialise the developed	Textbook "Practical training
		adaptive integrated learning environment and	course in meteorology and
		to further develop local weather, air quality	climatology", 117 p., 2018
		and climate services on its basis for target	Textbook "Economic
		groups rangring from whole sectors of	meteorology", 352 p., 2019
		economy to schools and private individuals.	Teaching aid "School
		Such services will help building more resilient	Weather Station", 15 p.,
		economic and social systems	2019
5	Promoting	the Promoting Green Games project sought to	Key Action: Cooperation
	Green Skills	develop an educational digital game &	for innovation and the
	through Games	associated resources to innovate & support	exchange of good practices
	2017-1-IE01-	improvements in the area of sustainability	Action Type: Strategic
	KA201-025721	education in schools, along with a toolkit for	Partnerships for school
	http://greenskil	teachers to aid in the integration of this game	- d
	intp.//greenski	teachers to and in the integration of this game	education
	lsgame.eu/	in the classroom. The project achieved this	education
			Results
		in the classroom. The project achieved this	
		in the classroom. The project achieved this primary goal by creating a game & associated	
		in the classroom. The project achieved this primary goal by creating a game & associated resources to support the introduction,	Results
		in the classroom. The project achieved this primary goal by creating a game & associated resources to support the introduction, integration & support of sustainability (&/ or	Results Teaching & Learning
		in the classroom. The project achieved this primary goal by creating a game & associated resources to support the introduction, integration & support of sustainability (&/ or climate action) education & activity within	Results Teaching & Learning
		in the classroom. The project achieved this primary goal by creating a game & associated resources to support the introduction, integration & support of sustainability (&/ or climate action) education & activity within schools for both students & for teachers. The	Results Teaching & Learning Resources
		in the classroom. The project achieved this primary goal by creating a game & associated resources to support the introduction, integration & support of sustainability (&/ or climate action) education & activity within schools for both students & for teachers. The developed project outputs have been subject	Results Teaching & Learning Resources Digital Game
		in the classroom. The project achieved this primary goal by creating a game & associated resources to support the introduction, integration & support of sustainability (&/ or climate action) education & activity within schools for both students & for teachers. The developed project outputs have been subject to testing, feedback & re-development a	Results Teaching & Learning Resources Digital Game Toolkit for Teachers

		sector & the main outputs (primarily the game	
		& associated training material) are currently	
		freely available on all major mobile formats &	
		in public repositories such as the iOS store &	
		Google play store. Feedback from pilot	
		participants indicated an extremely positive	
		opinion towards the use of the game for	
		teaching & learning.	
6	Green	The project developed competency-based	Key Action: Cooperation
	competencies:	training that empowers the end-users with	for innovation and the
	Europe	green skills and competencies about natural	exchange of good practices
	safeguarding	and cultural landscape preservation,	Action Type: Strategic
	its natural	identifying relevant concepts of "cultural	Partnerships for vocational
	heritage	landscape".	education and training
		The project involved stakeholders of different	
	2018-1-PL01-	profiles and backgrounds from each country	Results
	KA202-050622	to support project activities, to disseminate	Power Point " Basic
	https://www.fa	and to realize follow-up activities. The primary	Knowledge About The
	cebook.com/GE	goal was to allow organisations to develop	Environment
	NES-Green-	and reinforce networks, increase their	Power Point " Protection Of
	competencies-	capacity to operate at transnational level,	Biodiversity"
	Europe-	shared and confronted ideas and methods,	Presentation " Dry Stones
	safegurading-	exchanged the best practices.	As Element Of Local
	its-natural-	Results: - the development of entrepreneurial	Development In Mallorca
	heritage-	skills in planning cultural and environmental	Genes Map Catalogue
	293540064606	tourism, in the use of English language and	E-Book " Natural And
	568/	ICT, Presentation of the best practice, the	Cultural Heritage" - The
		exchange of good practices in VET about	Examples Of Good Practice
		preservation, management and valorisation of	Ppp Good Practice In
		the local cultural and natural heritage. •	Estonia
		Digital competencies improvement through	Ppp Good Practice In
		the virtual maps creation. • Communication	France
		skills and competencies developing a new	
		form of communication strategies on how to	
		promote sustainable development and natural	
1			

		heritage preservation, in particular, we would	
		stimulate trainees to know own landscape	
		characteristic and point to valorise. • Social	
		and civic competencies promoting social	
		cohesion and exchange between cultures. •	
		Cultural expression improving awareness of	
		European and national cultural landscape	
		heritage.	
		Impact: - increased EU cultural and natural	
		heritage awareness - higher competencies	
		about cultural landscape, national regulation	
		and EU rules - increased knowledge of native	
		culture - strong bonds with staff from partner	
		organisations - digital skills development -	
		English language skills development -	
		experience of different teaching methods -	
		social skills development - development of	
		communication and intercultural skills (critical	
		thinking, problem solving abilities, team	
		working)	
7	LOVE EVERY	The project provided an introduction to the	Key Action: Cooperation
	DROP	importance of water locally and globally and	for innovation and the
	2017-1-LT01-	raise awareness of how simple actions can	exchange of good practices
	KA219-035229	substantially reduce water consumption. The	Action Type: Strategic
	http://www.dro	focus was for students to carry out water	Partnerships for Schools
	ps.rapolioniogi	audits in their schools and homes, as well as	Only
	mnazija.lt/	of local rivers and lakes. The aim was to make	
		students understand the value of clean water	Short films with a STOP
		in their local environment, to develop their	MOTION technique about
		knowledge about the importance of water by	water
		analyzing its role in the past, present and	Dissemination material
		future, to enhance responsible attitudes and	The Importance of Water
		effective key competences towards the	Conservation
		respect of water and our environment, to	Love Every Drop
		improve students' language and intercultural	
			1

knowledge, to make the students from the	Others
target group and the community responsible	
about the problem of water management, to	Water consumption
identify solutions concerning the responsible	measurements chart
management of environmental problems in	
general and water in particular, to integrate	
students in the European society as active	
participants and potential future decision	
makers, to promote cooperation between	
young people from different European	
countries.	
Subjects and Problems: 1. water preservation.	
2. providing European cooperation between	
students from different countries as active	
citizens in a common effort to resolve a	
general problem which affected Europe in the	
years to come.	
The major impact resided in the fact that the	
target group became aware of the necessity	
of a rational and sustained management of	
the water resources. In this way they became	
active participants in the process of	
environmental protection in general and	
water resources in particular. The	
development of the project determined the	
raising of awareness amongst the population	
when it comes to the responsible	
management of water. This led to the	
reduction of water consumption at home and	
at school, by rationally using the existing	
resources and by raising the quantity of	
recycled water.	

Section 2: University – enterprise collaborations

3.2 University – enterprise collaborations – examples Prepared by SEUSL team.

Table 11: University – enterprise collaborations – examples

Program	Description	Source
UN Climate	The UN Climate Change and Universities Partnership	https://unfccc.int/news/un-
Change and	Programme, coordinated by the NWP, is an	climate-change-works-with-
Universities	opportunity for graduate students to work closely with	universities-to-foster-
Partnership	local, national and regional partners to undertake a	resilience#:~:text=Launched
Programme	research project as a part of producing their master's	<u>%20at%20the%20recent%20</u>
	thesis, while focusing on producing tangible outputs in	United,remain%20a%20critic
	response to the needs of targeted knowledge users in	al%20barrier%20to
	countries and subregions	
	Bridge adaptation knowledge gaps in various sub-	
	regions, building on progress made to-date on the	
	Lima Adaptation Knowledge Initiative;	
	Strengthen the research to practice interface by	
	connecting graduate students with relevant	
	international, regional, national and local	
	institutions, who would provide technical support	
	and guidance to the identified research project;	
	Produce relevant knowledge products to support	
	the design and the subsequent implementation of	
	the National Adaptation Plans (NAPs) in developing	
	countries, particularly in least developed countries;	
	Produce useful knowledge products that feed into	
	the UN Climate Change secretariat's key thematic	
	areas (e.g. biodiversity and climate change	
	adaptation, and oceans, coastal areas and	
	ecosystems) to further support the knowledge	
	needs of Parties.	
Building Japan -	The workshop enabled researchers to identify six	(https://www.britishcouncil.j
UK Research	themes in climate change to further develop research	p/en/programmes/higher-
Collaboration	collaborations between the member universities.	education/university-
Climate Change,	These themes are:	<u>industry-</u>

Co-funded by the Erasmus+ Programme of the European Union

Tokyo, 29-30	Low carbon societies and green infrastructure	partnership/renkei/climate-
November 2018	Future risks and adaptation in floods and water	<u>change</u>
	shortage	
	• Future risks and adaptation in food production and	
	security	
	 Managing future risks and building resilience in 	
	urban areas	
	Future risks and adaptation in ecosystems	
	Future risks and adaptation in human health	
Japan, Vietnam	Vietnam-Japan University and Ibaraki University in	https://e.vnexpress.net/news
universities	Japan have signed an MOU to offer a joint master's	/news/japan-vietnam-
collaborate for	degree in climate change.	universities-collaborate-for-
climate change		climate-change-battle-
battle		<u>3812616.html</u>
India-European	Indian researchers, universities, research organizations	https://ec.europa.eu/researc
commission	and enterprises are able to team up with any European	h/participants/data/ref/h202
partnership	partners to participate in collaborative projects under	0/other/hi/h2020 localsupp
	Horizon 2020 and make the best use of Europe's	india_en.pdf
	scientific excellence.	
Government of		https://www.iucn.org/conten
	This collaboration is based on the Climate Change and	t/climate-change-and-
Pakistan in	Vulnerability Challenges in Pakistan. This Collaboration	vulnerability-challenges-
collaborations	organized a press brief on the sidelines of the	pakistan
with IUCN,	Copenhagen Climate Change Conference. The focused	<u></u>
International	ideas were,	
Union for	 increased variability of monsoon, 	
Conservation and	 receding of Himalayan glacier's likely impact on 	
Natural	Indus River system flows,	
Resources	 decreased capacity of water reservoirs 	
	 extreme events including floods and droughts 	
	severe water stress,	
	face food insecurity due to decreasing agricultural	
	production.	
	 the degradation of ecosystems, biodiversity loss 	
	• saline water intrusion in the aquifers.	
<u>i</u>		

Section 2: University – enterprise collaborations

The 2015	IWA is partnering with water organizations from the	<u>https://iwa-</u>
International	U.S. and Australia for what will be a practical	<u>network.org/how-</u>
Water & Climate	conversation among attendees and speakers to inform	communities-tackle-water-
Forum in San	water utility climate action. ideas that will move	and-climate-realities/
Diego, California.	communities and water systems to the next level in	
	integrating climate resilience considerations in utility	
	strategic planning and operations	
World Water	The International Water Association (IWA), VIA	https://en.via.dk/programme
Camp	University College and Young Water Professionals	s/bachelor/climate-supply-
	Denmark (YWPDK) are collaborating to focus on	engineering/watercamp
	climate change adaptation, wastewater and drinking	
	water.	
	Three main themes of the camp are,	
	Drinking water	
	Wastewater	
	Climate Adaption	
AWP and IWMI	IWMI and Australian Water Partnership (AWP)	https://waterpartnership.org.
to collaborate on	collaborate on programs related to the management	au/awp-and-iwmi-to-
water	of water for agriculture, integrated river basin planning	collaborate-across-the-asia-
management	and modelling, managing climate change impacts on	pacific/
across the Asia-	water resources, and water management education.	
Pacific		
The Australian	Conference sub-topics proposed by UAE University are:	https://waterpartnership.org.
Government UAE	Groundwater simulation and solute transport	au/uae-university-seeks-
University have	Groundwater recharge and ASR systems	partners-for-water-resource-
co-hosted a joint	 Innovative techniques for restoration and 	management-and-
Conference on	remediation of aquifers	sustainability-for-arid-
Water Resource	Surface water harvesting	environments-conference-at-
Management	 Mitigation of flood hazards in arid regions 	<u>dubai-expo/</u>
and	Drainage systems in arid regions	
Sustainability for	Water treatment technologies	
Arid	Water recycling and reuse of gray and treated	
Environments at	wastewater	
the World	Improvements in desalination technology	
L		

Exposition in	 Irrigation technology and water conservation in 	
Dubai	agriculture	
	Water-food-energy nexus	
	Renewable energy and water resources	
	development	
	Applications of Geographic Information Systems	
	(GIS) and Remote Sensing (RS) in water resources	
	planning and management	
	 Integrated management of water resources 	
	Cloud seeding	
	Climate change and water resources in arid regions	
	Water policies and regulations	
	Risk management	
IWMI is	A recent study sheds new light on the climate-	https://wle.cgiar.org/thrive/2
contributing with	groundwater relationship, finding that the 2015-2016	019/08/19/it%E2%80%99s-
University	El Niño weather event replenished groundwater very	time-look-underground-
College London,	differently in southern Africa and in East Africa just	climate-resilience-sub-
Cardiff	below the equator. Based on a combination of satellite	<u>saharan-africa</u>
University,	and on-site data analysis, it is part of a growing body of	
University of	research,	
Sussex, and		
British Geological		
Survey & some		
African		
Universities.		
ICAR-IWMI	Drought forecasting system and climate change (CC)	https://wle.cgiar.org/project/
collaboration on	impact evaluation would support decision-making, and	new-approaches-monitoring-
managing floods	in addition, strategies to manage and strengthen	and-managing-floods-and-
and drought	agriculture-water management, which could mitigate	droughts-india
	drought, risk	
The University of	The collaboration will focus on fresh in connection to	https://www.un-
Amsterdam	food and climate change.	ihe.org/water-food-and-
(UvA) in		climate-conference
collaboration		
with IHE Delft,		
with the Defit,		

VU Science for		
Sustainability		
Programme, the		
Amsterdam		
Business School,		
and		
Kennisactieprogr		
amma Water.		
IHE Delft renew	To discuss the long-term climate resilience strategy for	https://www.un-
collaboration	Hong Kong. As changing climate and economies are	ihe.org/news/ihe-delft-
with Drainage	leading to increased levels of global uncertainty and	renew-collaboration-
Services	risk, decision-makers across the world are reviewing	drainage-services-
Department of	their flood (disaster) risk management strategies.	department-hong-kong
Hong Kong	Singular, extreme events are becoming more common,	
	while lead-in times needed for flood protection	
	infrastructure remain long	
Furthering	The collaboration has a lot of opportunities to offer in	https://www.iucn.org/news/
commitments to	terms of strengthening our efforts in the areas of	oceania/202004/furthering-
nature:	climate change, environment protection, conservation,	commitments-nature-
Melanesian	and other sustainable development initiatives,	melanesian-spearhead-
Spearhead Group		group-and-iucn-ink-
and IUCN ink		partnership
partnership		
MoU with	Partners in the Adaptation Academy are UNFCCC, IHE	https://www.un-
UNFCCC	Delft, Asia Institute of Technology (AIT) and Oregon	ihe.org/news/mou-unfccc-
establishes	State University (OSU) with the Alliance for Global	establishes-adaptation-
Adaptation	Water Adaptation (AGWA) playing a facilitation role.	<u>academy</u>
Academy.	The purposed of this programme is to,	
	 first develop and then offer a face-to-face 3–4- 	
	week training programme focused on imparting	
	technical knowledge of the key components of the	
	measurement and allow for the exchange of views,	
	sharing of lessons learned and experiences, and	
	internalizing and mainstreaming climate change	
	activities.	

Next steps include the development of the course
curriculum and thereafter the content of the
modules

3.3 University – enterprise collaborations

Prepared by Munkhtsetseg.

Table 12: University – enterprise collaborations

	Institute, course	Objectives	Why is it best practice
			?
UI UI UI I pr 1 pr htt ws ch ur	N climate change	Objectives The UN Climate Change Secretariat is seeking to strengthen collaborations with universities and academic institutions, most especially those based in the global south, to: Bridge adaptation knowledge gaps in various sub-regions, building on progress made to- date on the Lima Adaptation Knowledge Initiative; Strengthen the research to practice interface by connecting graduate students with relevant international, regional, national and local institutions, who would provide technical support and guidance to the identified research project; Produce relevant knowledge products to support the design and the subsequent implementation of the National Adaptation Plans (NAPS) in developing countries, particularly in least developed countries; Produce useful knowledge products that feed into the UN	

adaptation, and <u>oceans, coastal</u>

areas and ecosystems) to

further support the knowledge

needs of Parties.

4 Section 3: Quality assurance existing outside the universities

4.1 Quality assurance existing outside the universities

Prepared by Stanislawa Koronkiewicz, Slawomir Kalinowski, PL-UWM.

4.1.1 Polish legislation

Polish contemporary water legislation and management is following EU regulations:

- 1. Urban wastewater directive (1991)
- 2. Nitrates directive (1991)
- 3. Drinking water directive (1998)
- 4. Water framework directive (2000)
- 5. Groundwater directive (2006)
- 6. Bathing water directive (2006)
- 7. Drinking water directive (2006)
- 8. Floods directive (2007)
- 9. Environmental quality standards directive (2008)

Good practice – free and easy access to public information about legislation documents, government activity and realised projects concerning water management.

Example: project climate adapt.

4.1.2 Government activity

State water holding polish waters

2016 – establishing state water holding polish waters. It has been the main entity responsible for the national water management since january 1, 2018. Polish waters employs over 6,000 employees throughout poland, whose mission is to protect polish citizens from flood and drought, sustainable water management to protect our water resources and ensure good water quality for present and future generations. Polish waters exercise ownership rights in relation to waters owned by the state treasury, charge and collect fees for water services, and issue administrative decisions (water law approvals). Polish waters also acts as a regulatory body to protect residents against unjustified increases in the prices of water supply and sewage services. Directors of regional water management boards approve tariffs for collective water supply and collective sewage disposal, issue opinions on draft regulations for water supply and sewage disposal, and settle disputes between water and sewage companies and recipients of their services.

This holding has three main departments:

1. Flood and drought protection department

Tasks: planning, project preparation and investment implementation as well as maintenance and operation of hydrotechnical facilities. The division also handles matters related to the provision of water for agriculture as well as matters related to the monitoring of hydrological and meteorological situations and crisis situations.

2. Water services department

Issues related to water users, primarily the issuance of water law permits, billing for water services, water management control, cooperation with various water users, incl. In matters relating to inland navigation, energy, industry, tourism and recreation.

3. Water environment management department

This division deals with matters related primarily to the implementation of eu directives, such as the so-called the water framework directive, the directive on the protection of marine waters, the directive on urban wastewater treatment or the nitrates directive. In addition, the division handles matters related to protected areas, such as natura 2000. This division also runs the water management it system.

4.1.3 Project klimada, adaptation to climate change

About the project (from the www page). The project "development and implementation of a strategic adaptation plan for the sectors and areas vulnerable to climate change" with the acronym klimada has been implemented in september 2011 and was completed by the end of 2013. The results of this project form the basis for the preparation of a strategic plan for adapting the country to climate change and was divided into two time scales – the period till 2030 and the period 2070-2100. The scope of work includes:

- 1. Assessment of expected climate changes in poland,
- 2. The assessment of climate change impacts and vulnerability of society and the economy to these changes,
- 3. Define the necessary of adaptation to the changes of climatic conditions of various economy and social life sectors and the estimation the necessary costs,
- 4. Mainstreaming the adaptation to climate change into socio-economic national policy,
- 5. Increasing the awareness of the different levels decision makers of risks related to climate impacts.


4.1.4 Enterprises activity

Water quality monitoring (tap water, surface water, groundwater, wastewater discharged from sewage treatment plants) is an important element in ensuring water quality and safety. Traditional physical and chemical methods as well as other unusual methods are used.

More about monitoring in attached file with presentation: water_monitoring.pptx (prepared for erasmus+ water harmony project.

An example of biomonitoring: application of clams to biomonitoring of water quality in warsaw waterworks (Poland).

https://www.boredpanda.com/clams-measure-water-quality-poland-fatkathy/?utm_source=google&utm_medium=organic&utm_campaign=organic

4.2 Quality assurance – examples

Prepared by SEUSL team.

- Assessment of the existing resourcing and quality assurance of current climate service by EU MACS European market for climate services. <u>http://eu-macs.eu/wp-content/uploads/2017/07/EUMACS_D12_v2x.pdf</u>
- 2. Quality Assurance for the Copernicus Climate Change Service https://climate.copernicus.eu/quality-assurance-copernicus-climate-change-service
- The Intergovernmental Panel on Climate Change (IPCC) was established by the World Meteorological Organization and the United Nations Environment Programme for climate change assessments.

https://www.ipcc.ch/

4. Verra's standards and programs

https://verra.org/verra-standards-and-programs/

Verra catalyzes measurable climate action and sustainable development outcomes by driving large-scale investment to activities that reduce emissions, improve livelihoods, and protect nature.

- Quality Assurance, Control and Assessment, New found land Labrador Canada <u>https://www.gov.nl.ca/eccm/waterres/rti/rtwq/qa/</u> To ensure the effectiveness and reliability of the Real Time Water Quality (RTWQ) Monitoring Program, quality assurance, quality control and quality assessment procedures have been implemented.
- Quality assurance framework development based on six new ECV data products to enhance user confidence for climate applications <u>https://ec.europa.eu/jrc/en/publication/quality-assurance-framework-development-basedsix-new-ecv-data-products-enhance-user-confidence</u>

