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A B S T R A C T   

Water treatment based on electrocoagulation (EC) is attractive since required chemicals and colloids are pro
duced in-situ. However, optimisation of EC operation parameters is necessary to enhance its efficiency. We 
optimised EC cell parameters by the response surface method (RSM). The optimal removal efficiencies of 
hardness (63%) and fluoride (97%) were achieved at 1.98 kW h/m3. With the removal of divalent cations, some 
anionic species concurrently remove via an energetically feasible route to adjust the charge balance. When 
simulated water is used (450 mg/L TDS, 580 mg/L CaCO3, 10 mg/L fluorides and pH 6.50), 83% hardness and 
99% fluoride are removed with 0.69 kW h/m2 energy consumption. The chemical species in the solution matrix, 
particularly SO4

2, significantly affect the hardness and fluoride removal efficiencies. The contaminated EC sludge 
resulted from feed water is characterised by spectroscopic methods to probe hardness and fluoride removal 
mechanisms. In the presence of Mg2+, F- interacts with Al-sludge sites forming ≡ MgF − OH. When Ca2+ and F- 

are present, both ≡ CaF − OH and ≡ CaF are formed. In Ca2+, Mg2+ and F- treated Al-sludge dominates ––– 
CaF− OH and ≡ CaF over ≡ MgF − OH.   

1. Introduction 

Due to intense rock weathering in the tropics, the natural ground
water enriches lithogenic solutes as fluoride and hardness (viz., divalent 
cations). The adverse climatic conditions prevailing in these regions 
force people to consume large quantities of solutes-enriched water, often 
implicating severe health problems [1–3]. Fluoride is an enforceable 
primary water quality standard [4] (maximum contaminants limit, MCL 
1.5 mg/L). Hardness is a non-enforceable secondary water quality 
standard where no MCL is defined. However, hardness (and TDS) ren
ders water unpalatable, restricting its human consumption [2]. There
fore, improvement of palatability of the drinking water is essential 
before treating excess trace solutes as fluoride. When water hardness 
(Ca2+ and Mg2+) is removed, anions in solution may adjust their 

activities to restore charge balance via energetically feasible pathways. 
Therefore, eliminating major cations in water is required first, and then 
assess other contaminants in the treated water to determine additional 
treatment, if needed. 

Hardness can be removed by reverse osmosis (RO) or nano
membranes (NM), ion exchange resins, lime softening, and electro
chemical methods [5,6]. In RO technology, almost all solutes in water 
are removed; hence, the treated water becomes unpalatable due to a lack 
of solutes. Long-term consumption of solutes-deficient water may also 
lead to nutritional disorders [7,8]. In lime softening, excess sludge is 
generated, and the treated water also requires additional treatment. The 
ion exchange plants generate high TDS water enriched with Na+ that 
need different treatment [9,10]. In contrast, the electrochemical 
methods can provide a solution for concurrent removal of fluoride and 
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hardness. Two types of electrochemical methods, i.e., electrodialysis 
self-reversal (EDR) and electrocoagulation (EC), are used to remove 
hardness, fluoride or other solutes in water [11,12]. By EDR technology, 
the hardness in water removes efficiently; however, they show limited 
success in removing fluoride. The fluoride in water replaces OH- on the 
membrane, forming specific bonds with the membrane sites, which the 
EDR self-reversal process cannot regenerate. The disposal of liquid EDR 
concentrates poses an additional issue [13–16]. The electrocoagulation 
method can be treated as a unification of several water treatment pro
cesses, e.g., coagulation, sedimentation, flotation, and oxidation [17]. 
Unlike membrane technology, in EC, the composition of the inlet water 
does not require rigorous pretreatment to remove particulates, natural 
organic matter, etc. [18,19]. The EC technology can remove inorganic 
ions, organic compounds, colour, oil, grease, and turbidity in water 
[20]. Further, the EC can destruct microbes via cell rupturing under an 
electric flux [21]. The sludge generated in EC is compact due to minimal 
enrichment of ions in solution and floats by gas bubbles generated at the 
cathode [22]. Electrocoagulation technology is not complex compared 
to membrane or EDR methods, and the routine operation is straight
forward. Hence, compared to membrane technology or EDR, EC 
methods are simple, robust, chemical-free, and cost-effective [19, 
23–25]. 

Electrocoagulation does not require external coagulants since they 
generate in situ by dissolving metal anodes. Compared to Fe, the Al 
electrodes used in EC cells is profitable for the following reasons: irre
spective of the current flux, Fe corrodes spontaneously in water; hence 
the generation of Fe derived coagulants is uncontrolled. However, the Al 
electrodes undergo surface passivation by forming an Al2O3 layer, and 
under controlled current flux water [Al3+] can regulate; unlike Fe3+, the 
Al3+ undergoes polymerisation forming Al(OH)

3+
15 ,Al7(OH)

4+
17 ,

Al8(OH)
4+
20 and, Al13O4(OH)

7+
24 therefore, the presence of free Al3+ is 

limited [19,26]. The required Al derived coagulants can control the 
demand; hence the sludge production and alum addition can cut off 
substantially. Therefore, we used Al sacrificing anode in EC to examine 
concurrent hardness and fluoride removal in water. The water hardness 
is removed by precipitating divalent ions on the cathode and adsorption 
onto Al(OH)3n flocs produced by the EC cell in near-neutral pH [5,19,27] 
(e.g. pH 6–8). In determining the effect of Ca2+ or Mg2+ on defluor
idation an optimal value is observed in the presence of Mg2+ by forming 
an Mg (OH)2 coating on Al-derived colloids that results in low F- 

retention affinity. The difference in EC defluoridation between Ca2+ and 
Mg2+ is known to depend on flocs composition. However, the synergy 
between Ca2+ and Mg2+ on defluoridation requires a detailed study. 
Mostly the EC methods are used to remediate a single contaminant as 
fluoride in water. Its versatility in removing multiple pollutants in 
drinking water is also demonstrated. The EC cells with Fe-Al anode are 
used to remove Sb and As [28] or As and F [29]. The substitution of Fe3+

ions by Al3+ ions in the solid surface resulted in increased surface sites 
for the adsorption of pollutants. However, the concurrent production of 
aluminium and iron derived colloids may result in excess wastes that 
require additional treatment [28]. Guzman et al. report the efficient 
removal of fluoride and arsenate in natural water using EC with Al an
odes where ion exchange and adsorption co-occur for fluoride and 
arsenic removal, respectively [30]. In this case, however, the water 
hardness is low (9.8 mg/L). 

We optimised EC cell parameters for concurrent removal of hardness 
(e.g., Ca2+ Mg2+) and fluoride in groundwater. We first optimised the EC 
cell for hardness removal efficiency in the presence of fluoride in water. 
The ions removal efficiency depends on water quality (pH, ionic 
strength, temperature, TDS) and EC cell (electrode dimension, applied 
current and voltage, processing time) parameters. The performance of 
EC cell depends markedly on the cell parameters compare to water 
quality. The optimisation of EC cell parameters first requires a system
atic approach for major solutes (in this case, hardness) in water. Once 
the optimisation is achieved, the composition of the treated water 

requires assessment for trace constituents (in this case, fluoride). We 
used a multi-factorial method based on response surface method (RSM) 
to optimise the current flux and reaction time for optimal hardness 
removal in water [31]. The response variable is only a function of a 
singly varied parameter. Therefore, the desired independent variables 
can be combined, and their mutual interactions can also evaluate for 
optimisation [32]. Besides, the RSM method decreases the total number 
of experiments required to optimise by saving time and experimental 
costs, providing an additional advantage. However, the optimisation 
process optimises operational conditions without shedding light on 
hardness or fluoride mechanisms [33]. At optimal conditions, the 
Al-derived sludge generated by the EC was analysed by spectroscopic 
methods to elucidate fluoride and hardness removal mechanism. 

2. Materials and methods 

2.1. Materials 

The aluminium plates (98% purity) required for EC cell design were 
obtained from Spectra Industries Lanka (Pvt) Ltd. Analytical grade, A.R., 
NaF, MgCl2, CaCl2. 2H2O, HNO3 and NaClO4 were obtained from Sigma 
Aldrich (USA). Milli Q water (Thermo ultra-pure system, Hungary 
0.055 µS/cm) was used in sample preparation. The required ground
water samples for experiments were collected from two villages within 
the same climatic zone in Sri Lanka. (The detailed chemical composition 
of the water samples is shown in Table 1-S; support documentation). For 
optimisation experiments, a simulated water sample was prepared to 
match the hardness and fluoride of the natural water using NaF, MgCl2, 
CaCl2. 2H2O and NaClO4 with a controlled matrix. Table 1 shows the 
chemical composition of the water samples used. 

2.2. Methods 

2.2.1. Lab-scale batch electrocoagulation reactor 
A laboratory-scale cylindrical batch reactor (Pyrex cell: diameter 

6.4 cm and height 8.00 cm) was used in the experiments. Two plates of 
aluminium (dimensions 6.00 cm × 1.60 cm × 0.44 cm; immersion 
depth 5.30 cm) were used as electrodes. The net capacity of the EC 
reactor was 175 mL. The two electrodes were connected in a monopolar 
configuration. The gap between the electrodes was maintained at 
1.00 ± 0.01 cm. Regulated current supply was given with high precision 
DC power supply (ZHAOXIN PS 305D; resolution voltage-0.1 V [stability 
≤0.01% + 2 mV], current-0.01 A [stability ≤0.1% + 3 mA]. Before each 
experiment, electrodes were rubbed with sandpaper to remove scale and 
soaked in 1 M HNO3 and Mill Q water for surface cleaning. The EC cell 
with monopolar electrode configuration, thus designed was used to 
optimise process time and current density for water hardness removal 
according to the method discussed in Section 2.2.2. 

2.2.2. Electrochemical cell parameters optimisation 
Response surface method was used for the statistical design of the 

experiments to evaluate the optimum EC cell operational parameters 
(process time: X1 and current density: X2) to maximise water hardness 

Table 1 
Chemical composition of simulated and groundwater samples.  

Sample type and 
location 

pH EC 
µS/ 
cm 

TDS 
mg/L 

Total hardness 
mg/L CaCO3 

Fluoride 
mg/L 

Simulated water 
(Ca2+

(aq), Mg2+
(aq) 

and F-
(aq))  

6.5  970  450  580  10 

L-1 (8◦21′11.3′′ N, 
80◦30′07.9′′ E)  

6.6  970  470  183  0.45 

L-2 (8◦19’53.9" N, 
80◦36’04.1" E)  

7.1  750  380  291  0.48  
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removal efficiency, Y1 according to the following model. 

Y = β0 +
∑

i
βiXi +

∑

i
βijX2

i +
∑

i>j
βijXiXj  

where Y response function (hardness removal efficiency), β0 is intercept, 
βi and βij are linear and quadratic coefficients, βij accounts for Xi and Xj,

and Xi and Xj are independent factors, i.e., current density and process 
time. Based on initial experiments, the initial values of independent 
variables are shown in Table 2. According to the central composite 
design (CCD) developed by Minitab code, a possible combination of 
experimental protocols was obtained. Accordingly, thirteen experi
mental protocols were used to evaluate response function experimen
tally (Table 2). The model optimisation was carried out with the natural 
water collected from the L-1 (Table 1). Afterwards, the model validation 
was carried out with the natural water sample collected from L-2 from 
the same climatic zone. After that the validated model was used to 
simulate the chemical composition of the stimulated water. 

2.2.3. Water quality assessments and sludge characterisation 
The samples’ pH and electrical conductivity (TDS calculated) were 

measured by a multi-parameters analyser (HANNA HI 9811-5, USA). 
Cations in solution were measured by inductively coupled plasma op
tical emission spectrometer (ICP-OES) (ICPA 7000, Thermo, USA) using 
certified standard solutions for calibration. Fluoride in solution was 
analysed using ion chromatography (Shimadzu, Japan) equipped with 
the conductivity detector (Shimadzu CDD 10A VP, Japan) and auto
sampler. Quality control data of the measurements made by IC and ICP- 
OES as described elsewhere [34–36]. The spike recoveries of fluoride 
hardness were measured using NIST CRN anion solution (ROTH 
multi-element IC CAS 2668). In water, 97.83 ± 0.06% recoveries were 
obtained for fluoride. For calcium and magnesium detection, ICP CRN 
was used (TRaceCERT 54704 Siga Aldrich, USA), and the spike re
coveries are 100.3 ± 1.51% and 98 ± 1.76% for calcium and magne
sium, respectively. The transmission FTIR method was used to 
characterise the Al sludge generated by EC experiments. KBr pellets 
were prepared at 1:10 sample: KBr ratio. Transmission FTIR spectra 

Table 2 
Central composite design observations of independent variables and predicted 
and experimentally achieved hardness removal efficiency used for the 
optimisation.  

Independent 
factors 

Factor Range and level 

X Low 
(− 1) 

High (+1)  

Time (min) X1  10 45 
Current density 

(A/cm2) 
X2  0.117 0.353 

Design variables 
Run order Actual levels Observations - hardness 

removal efficiency (%) 
Time 
(min) 

Current density (mA/cm2) L - 1 L - 2 

1  
52.2  

3.53  
63  64 

2  
45  

2.35  
57  59 

3  
27.5  

4.71  
48  52 

4  
27.5  

4.71  
48  52 

5  
10  

5.89  
35  41 

6  
27.5  

4.71  
42  51 

7  
2.7  

4.71  
38  31 

8  
10  

2.35  
38  37 

9  
27.5  

4.71  
51  53 

10  
27.5  

4.71  
54  54 

11  
45  

5.89  
62  59 

12  
27.5  

7.07  
48  53 

13  
27.5  

1.17  
48  54  

Fig. 1. Variations of hardness removal efficiency in A. groundwater of locations 1 and 2; symbols represent observations. Source water composition, current density 
and response time were related to Table 1 and 2. B. Simulated water by EC. Symbols represent various simulated water types. Model calculations were carried out 
with an RMS model developed for natural groundwater. 
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were recorded with an IR spectrometer with a DTGS detector (iS50 
Thermo Scientific, USA). All spectra were obtained at 4 cm− 1 resolutions 
in the 400 – 4000 cm− 1 spectral range. X-ray diffractograms of 
aluminium sludge were obtained for phase identification. An X-ray 
diffractometer at 20 kV and 30 mA was operated using Cu-Kα radiation 
at λ = 0.154 nm (Bruker D8 Advance Eco). X-ray photoelectron spec
troscopy (XPS) measurements were carried out using a Thermo Esca lab 
250Xi (Thermo Fisher Scientific, Waltham, MA, USA) system using a 
monochromatic Al Kα source (1320 eV, 140 W). Peak fitting was per
formed according to Gaussian/Lorentzian functions using Origin Pro 9 
software. The EC sludge morphology and surface structures were 
observed by cold field emission scanning electron microscope (Hitachi, 
Japan; SU8020). 

3. Results and discussion 

3.1. Central composite design model development for hardness removal 

The efficiency of treating contaminants by EC depends on both feed 
water composition, viz., pH, ionic strength, contaminants load, and EC 
cell parameters, viz. current and process time. Hardness occurs mainly 
due to major divalent cations as Ca2+ and Mg2+ in water. To ensure 
drinking water palatability, the major species (presently Ca2+ and Mg2+) 
require treating first; however, to ensure solution charge balance, an
ions’ concentration automatically adjusts. We designed experiments to 
optimise EC cell parameters to maximise hardness removal in natural 
groundwater by RSM. The central composite design of independent 
design variables, viz. current density and time, are shown in Table 2. The 
coefficients of the response function for hardness removal efficiency is 
shown in Table 2-S. The ANOVA data of independent design factors 
indicate that the RSM regression model adequately interprets observa
tions (F = 11.80 Table 3-S), and the hardness removal efficiency ranges 
between 35% and 63%. Statistical analysis showed the significance of 
the linear term (X1, time) in the model with Pr (probability) < 0.05 
(Table 3-S). However, the coefficients correspond to linear (X1), square 
(X1

2) and cross-term interactions (X1X2) are not significant (P(r)> 0.05). 
Accordingly, the optimised RSM model for hardness removal efficiency 
in water is shown below: 

(Y1) = 38.4+ 0.170X1 − 0.36X2 + 0.00324X2
1 − 0.122X2

2 + 0.0570(X1X2)

(1)  

(S = 3.78,R2 = 89.39%,R2
adj = 81.81%, R2

pre = 71.08%)

The suitability of the RSM model in response function predictions is 
embedded in the response variable (S), regression coefficient (R2), R2 

adjusted, and R2
pre predicted values. The high regression coefficient (R2 

= 89.39%) and its agreement with adj. R2 complies with a good data fit. 
The S value measures the agreement between data values and response 
surface. A minimal S value implies a good agreement between mea
surements and modelled data [32,37]. Experimental error of hardness 
removal efficiency as shown by lack of fits is statistically insignificant 
(Pr(probability > 0.05), and the model adequately predicts observations 
with 6% uncertainty [37] (Table 3-S). The optimised RSM model was 
then validated using an independent dataset from a different location in 
the same climatic zone (viz. L-2). Accordingly, the hardness removal 
efficiency values were calculated, and their agreement with observa
tions are shown in Fig. 1-A. The residuals, e.g., the difference between 
experimental and predicted responses, could be utilised to investigate 
the adequacy of the model [38,39]. Based on a normal distribution, 
residuals are considered unexplained variations distributed randomly 
around zero if the model is a good predictor (Fig. 1-S). Thus, the RMS 
model predicts the observations adequately for the aquifer in the dry 
climatic zone (Sri Lanka). 

The production of coagulants by electrocoagulation depends on 
electrolysis time and current, which determines the size of the gas 
bubbles generated at the cathode [40]. Variations of hardness and 
fluoride removal efficiency as a function of current density and contact 
time for the water collected from L-1 are shown in Fig. 2-A and B (similar 
trends of hardness removal were observed for L-2, hence not shown). 
The contour patterns of hardness and fluoride removals to current 
density and process time differ markedly. At a given process time, the 
hardness removal efficiency does not vary significantly with the current 
density. At a given current density, the hardness removal efficiency 
monotonously increases with the processing time. However, the spatial 
variation of fluoride removal efficiency shows a variation with the 
current density and process time reaching a hillock morphology [39]. 
The removal of hardness inducing species from water occurs on the 
cathode surface, and the flocs are generated by Al dissolution. Increased 

Fig. 2. Variation of hardness and fluoride removal efficiencies as a function of current density and process time. A. hardness B. fluoride as a function of time and 
current density for location 1. Source water composition: TDS 470 mg/L, hardness 183 mg/L CaCO3, fluoride 0.45 mg/L and pH 6.60. 
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current density resulted in enhanced OH- production at the cathode may 
precipitate Ca2+/Mg2+ species on the cathode surface. However, the 
mass balance calculations show that less than 1% of Ca2+ and Mg2+

removed on the cathode surface. However, aluminium flocs provide 
many reactive sites for Ca2+ and Mg2+ retention [5]. Therefore, hard
ness removal efficiency is increased above 50 min process time between 
4.71 and 5.9 mA/cm2 current density. Over 80% of fluoride in water can 
also be removed (Fig. 2-B). However, very high current density values 
and process time negatively affect hardness (and fluoride) removal ef
ficiencies resulting in a high activity of Al3+ free ions [19]. In addition, 
after the treatment, high density and poor affinity between hydroxide 
flocs and gas bubbles create a difficultly in floc separation. Because of 
these reasons, elevated current density and electrolysis time conditions 
are not suited for hardness removal. Therefore, 3.53 mA/cm2 current 
density and 52.2 min time are adequate for optimal removal of hardness 
(63%) and fluoride (97%) at 1.98 kW h/m3 energy consumption. The 
operation cost for removing hardness and fluoride in water by EC is also 
calculated using the prices of electrode materials (0.76 $/kg) and elec
trical energy (0.17 $/kW h) as input parameters according to the 
methodology given elsewhere [40]. The hardness and fluoride values of 
the treated water are 67.3 mg/L CaCO3 and 0.01 mg/L, respectively. 
Total operation cost is 0.93 US$/ 0.175 L water. 

3.2. Matrix effects on hardness removal 

The activities of matrix anions and their chemical nature can change 
the behaviour of hydrolysed cationic coagulant, directly influencing the 
hardness removal efficiency. This interaction depends on the changes of 
electronegativity due to the coordination of aluminium and the 
replacement of hydroxyl ion or changes of positively charged sites on the 
metal hydroxide precipitates [41,42]. In the absence of SO4

2-, Cl-, and 
NO3

- in the matrix, the hardness removal efficiency was closed to 80% for 
simulated water, whereas fluoride removal efficiency was almost above 
90% (Fig. 1-B). In each experiment set, a gelatinous deposition layer was 
observed on the anode surface due to the surface coprecipitation 
mechanism of defluoridation. 

Formation of CaF2 is possible during the treatment since Ca2+ ion 
concentration is above 150 mg/L [43]. Although Aly(OH)3x flocs 
contribute to F- removal, they also act as a nucleus for the formation of 
CaF2. Additionally, a positive effect of Ca2+ on fluoride removal was 
probably associated with the coprecipitation of Al3+ and Ca2+. 

mAl3+ + nCa2+ + (3m + 2n)H2O = AlmCan(OH)3m+2n +(3m + 2n)H+

Mg2+ also use as a co-coagulant with aluminium salts. However, 
there is a possibility of forming Mg(OH)2 on the Aly(OH)3x surface. 
Therefore, Mg(OH)2 blind the Aly(OH)3x flocs [44,45]. Stoichiometric 
coefficients related to the reactions were denoted in m,n,x and y terms. 

However, we have noted a negligible mass loss of the cathode at the 
end of a treatment cycle. The pH values of both source and treated water 
lie between 6.50 and 7.00. The negligible pH variations of the treated 
and source waters are ascribed to the high buffer capacity of newly 
formed polymeric aluminium colloids in neutralising OH- released at the 
cathode [19]. Therefore, additional pH adjustment is not required to 
obtain the highest hardness and fluoride removal efficiency [43]. The 
situation is markedly different when hardness removal is accounted for 
via EC treatment with the groundwater (Fig. 1-B). Typically, a natural 
water system consists of coexisting anions, cations and natural organic 
matter. Therefore, removing hardness in natural water is complicated 
compared to simulated water with a controlled matrix. However, 
simulated water with coexisting ions, viz. NO3

- , SO4
2-, Cl- and F-, hardness 

removal efficiency values are somewhat similar to the groundwater. 
Nitrate does not significantly influence destabilization with 

aluminium coagulants due to its weak coordination tendency with metal 
ions. However, chloride and sulphate considerably affect coagulation by 
aluminium salts [42]. Hardness removal efficiency for simulated water 
with sulphate anion was comparatively low than other coexisting an
ions. Therefore, according to Fig. 1-B, our data implied a strong coor
dination effect of sulphate to the aluminium hydroxide system [27]. Due 
to the surface ionisation and site-specific complex formation reactions, 
sulphate anion can destabilise the positively charged aluminium hy
drolysis products [41]. 

Further, the formation of CaF2 is also reduced, and therefore hard
ness removal efficiency decreases with increasing the amount of sul
phate [33]. Inhibition of aluminium electrode corrosion and 
competition between sulphate and fluoride ion negatively affect 
defluoridation efficiency. Therefore, reduced fluoride removal effi
ciency can be identified with high sulphate containing feed water. 

Al(OH)3− xFx + ySO2−
4 = Al(OH)3− xFx− 2y(SO4)y + 2yF−

The negligible effect can be identified with Cl- ions during defluor
idation [43]. Research is needed to assess the role of natural organic 
matter on floc formation and hardness removal efficiency de
terminations. The matrix of the solution affects hardness removal 

Fig. 3. A. Water hardness and fluoride removal efficiency using optimised EC. B. Residual aluminium concentration in treated water. Feed water composition is 
shown in Table 1 and Table 1-S. Vertical lines depict error bars. 
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efficiency. Therefore simulated water removal efficiency is not matched 
with the developed model as contaminated water. The removal effi
ciencies of fluoride and hardness in different water types using opti
mised EC reactor are shown in Fig. 3.A. The residual aluminium 
concentration in treated water is always below the WHO maximum 
contaminant levels (MCL) as shown in Fig. 3. B [46]. 

3.3. Sludge characterisation 

3.3.1. SEM characterisation 
SEM images were used to investigate the morphology of optimised 

condition sludge (Fig. 4). The Al sludge generated by fluoride treatment 
shows spherical and porous nanoparticles consist of aluminium oxide 
hydroxide species (black circles in Fig. 4. A) [47]. However, in the 
optimised sludge of Ca2+, Mg2+ /Al and Ca2+, Mg2+, F-/Al superb 

porosity can be identified with a large surface area. Additionally, 
amorphous sludge particulates are also present. 

3.3.2. XRD characterisation 
By the dissolution of Al sacrificing anode in EC, the Al-sludge is 

generated. The chemical composition and the structure of the sludge 
depend on the feed solution composition. The XRD data of Al derived 
sludge generated in the EC cell upon interactions with hard water in the 
presence or absence of F- are shown in Fig. 5. The XRD peaks at 2θ0 

18.590, 20.440, 26.330, 50.650, and 52.360 confirmed gelatinous 
Aly(OH)3x sludge phase believed to form via Al13 kegging in monopolar 
EC configuration [48,49]. When Aly(OH)3x derived sludge interacts with 
hard water, carbonate and hydroxide phases of calcium and magnesium 
also emerge. The peaks at 2θ = 23.880, 29.360, 36.50, 39.50, 48.50, 56.60 

correspond to the calcium carbonate phase readily discern in the 
Al-sludge generated by fluoride hard water treatment [50]. AlF3.3 H2O, 
CaF2, and MgF2 phases can also be identified when Al-derived sludge 
interacts with hard water enriched with fluoride. Sharp diffraction peaks 
correspond to AlF3.3 H2O are identified at 2θ = 24.730, 27.080, 32.890, 
44.620, 53.110, 57.320, 59.430, 67.360, 70.630 [51]. The peaks at 2θ 
= 15.150, 30.390, 48.700 confirm the presence of aluminium fluoride 
hydroxide [29]. The relative intensity of XRD peaks correspond to 
Aly(OH)3x has reduced when Ca2+ and Mg2+ is present in association 
with F-. The reduced XRD peak intensity of the sludge confirms the 
improved defluoridation in the presence of Ca2+ and Mg2+. Therefore, 
the cubic phase of the fluorite (CaF2 space group Fm3m) can be iden
tified. The XRD peaks at 2θ = 28.320, 47.150, 55.840, 68.730 corre
sponded to (111), (202), (311) and (400) planes, respectively [29,52]. 
The diffraction peaks at 2θ = 32.620, 46.650, 54.470 confirm the MgF2 
phase in the sludge [53]. 

3.3.3. XPS characterisation 
The high-resolution x-ray photoelectron spectroscopic spectrums of 

O1s, C1s, Al2p, Ca2p, Mg1s, and F1s received by interacting EC sludge with 
feed solution containing Ca2+, Mg2+ and F- is shown in Fig. 6. The Al2p 
peak at 74.27 eV is ascribed to Aly(OH)3x phase [54]. The O1s peak at 
531.8 eV occurs due to bulk hydroxyls in Aly(OH)3x phase [54]. The 

observed 
(

O
Al

)

atomic ratio ~ 3 favours Aly(OH)3x stoichiometry 

(Table 4-S). As EC process time evolved, the aggregation of gelatinous 
Aly(OH)3x particulates is discerned, and the formation of γ-AlO(OH) 
phase with high crystallinity is favoured, as supported by the reduc

ed
(

O
Al

)

ratio. The peak at 75.48 eV due to Al in fluorinated alumina 

(AlOFx) supports fluoride removal on aluminium oxide hydroxide 

Fig. 4. Scanning electron micrographs obtained for sludge generated after interacting with feed water of different composition. A. F-/Al feed water, B. Ca2+, Mg2+

/Al feedwater C. Ca2+, Mg2+, F-/Al feedwater. 

Fig. 5. XRD patterns EC sludge after interacting with feed water of different 
composition. B: fluoride feedwater G: hardness feedwater and H: hardness and 
fluoride feedwater. 
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Fig. 6. XPS curve fit of Al2p, O1s, C1s, Ca2p, F1s and Mg1s spectrum of optimised condition Ca2+, Mg2+,F-/Al sludge. The elemental composition data of the sludge 
materials is given in Table 4-S. 
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substrate [55] (Fig. 6. A). The XPS spectrum of O1 s has resolved into 
three peaks. The peak at 530.74 eV binding energy is ascribed to lattice 
oxygen in Al2O3 [56]. The adsorbed water on sludge creates a peak at 
533.17 eV [54,56] (Fig. 6. B). The spin-orbit doublet of Ca 2p is 
observed at binding energies of 347.14 eV for Ca2p 3/2 and 350.68 eV for 
Ca2p ½. These peaks are assigned to CaF2, associated with –––Ca-O and 
–––Ca-OH sites [57,58]. The difference in binding energy between Ca2p 

3/2 and Ca 2p 1/2 bands is 0.8 eV [59]. This value increases as a function 
of O2- and OH- species (Fig. 6. C). The F 1s peak at 685.10 eV indicates 
CaF2 in the contaminated sludge [58]. The peculiar behaviour of the 
peak in the vicinity of ~685 eV confirms fluoride removal as CaF2, but 
not as AlF3 [59] (Fig. 6. D). 

The C 1s peak at 289.30 eV confirmed the presence of carbonate in 
the sludge [60] (Fig. 6. E). In agreement with XRD spectra, the Ca 2p 
peak has spaced spin-orbit components related to ΔC carbonate = 3.54 
and interaction of CaF2 species with CaCO3 in the Ca2+, Mg2+, F-/Al 
sludge [61]. Additionally, the strong satellite features further confirm 
the presence of CaCO3 species in the Ca2+, Mg2+, F-/Al sludge [62]. In 
Mg 1s spectrum, the peak at a binding energy of 1304.6 eV implied the 
metal carbonate [63] (Fig. 6. F). Further, O 1s spectrum of Ca2+, Mg2+, 
F-/Al sludge indicates carbonate at a binding energy of 533.17 eV with C 
1s spectra at a binding energy of 289.30 eV [64]. The [O]

[Mg] atomic per
centage for Ca2+, Mg2+ /Al sludge was 12.10 while 16.28 for Ca2+, 
Mg2+,F-/Al sludge (Table 4-S). The sludge with high oxygen content 
implied the presence of oxygen contain debris. Therefore, there is Mg2+

in MgO, Mg(OH)2.nH2O and MgCO3 forms [65]. 

3.3.4. FTIR characterisation 
The discrete IR bands are shown in the lattice vibration region, i.e., 

1200–1800 cm− 1 are ascribed to admixture CO2 or H2O adsorption on 
Al-derived sludge (Fig. 7. A). The variations in these IR bands provide 
important information between surface sites and solute species in
teractions. The IR bands shown in the 900–1100 cm− 1 range is due to 
the formation of gelatinous ≡ Aly(OH)3x colloids (Fig. 7. A). The for
mation of gelatinous ≡ Aly(OH)3x was observed in experiments. The IR 

band at 1650 cm− 1 due to H-O-H bending vibrations confirms the 
presence of surface-adhered water on ≡ Aly(OH)3x [66]. The bands 
at 3676 cm− 1 and 3448 cm− 1 persist even after the evacuation, can be 
ascribed to -OH stretching and H-bonded -OH vibrations of ≡ AlOH 
[67]. Further, the appearance of a band at 1524 cm− 1 suggests the 
presence of surface ≡ AlOH bending vibrations. The IR spectrum in 
Fig. 7. B was measured after interactions of F- with ≡ Aly(OH)3x. A new 
IR band appeared at 744 cm− 1, and the band at 1020 cm− 1 due to 
≡ Al − O − H deformation vibration shifted to higher wavenumber [68, 
69], and band at 1375 cm− 1 decreased in intensity while the band at 
1524 cm− 1 ascribed to the ≡ Al − O − H bending vibrations disappeared 
due to OH- → F- substitution [29,69]. The emergence of a band at 
744 cm− 1 can be ascribed to the Al − F vibrations in ≡ AlF(OH) com
plexes [69–71]. When Mg2+ ions were added to the initial sludge, as 
shown in Fig. 7. C, the IR bands around 1000 cm− 1 and 1380 cm− 1 

broaden due to weak interactions between Al-sludge and magnesium 
species forming few ≡ Al − O − Mg − OH. As evidenced from Fig. 7. D, 
compared to Mg2+, the interactions with Ca2+ and Al-sludge show 
distinct features at 870 cm− 1 and 964 cm− 1 that can be ascribed to 
Al− O− Ca− OH formation (≡ Al − O − Ca − OH)δ+ species. Further, the 
appearance of distinct bands at 1792 cm− 1 and 2517 cm− 1 may be due 
to the resonance of the band at 870 cm− 1. When F- ions were introduced 
to the sludge-Mg system, the re-appearance of very small bands around 
1020 cm− 1 and 1380 cm− 1 indicates the release of some H-bonding 
behaviour of ≡ Al − O − Mg − OH species, probably due to the formation 
of ≡ MgF − OH species as evident in Fig. 7. E [72]. 

These changes are prominent in the spectrum Fig. 7. E, which is 
obtained with the interaction of F- ions with the sludge-Ca system, 
indicating CaF− OH species’ formation together with ≡ CaF. The for
mation of direct ≡ CaF species can be confirmed by observing the 
disappearance of bands in the 900–1100 cm− 1 range of the spectrum 
Fig. 7.D. This has been further supported by the observation of the 
reduction of H-bonding nature in the spectrum Fig. 7. F where some 
small distinct features appeared around 3600 cm− 1 freeing OH species 
indicating the replacement of more OH groups by F-. When Ca2+, Mg2+

interact simultaneously with the sludge (Fig. 7. G), the spectral features 
related to Ca2+ interactions are predominant over the Mg2+ interactions; 

Fig. 7. FTIR spectra of A: aluminium sludge B: sludge with F- C: sludge with 
Mg2+ D: sludge with Ca2+ E: sludge with Mg2+ and F- F: sludge with ca2+ and F- 

G: sludge with Ca2+ and Mg2+ H: simultaneous hardness (Ca2+, Mg2+) and 
fluoride sludge. 

Fig. 8. A postulated mechanism for concurrent removal of fluoride and hard
ness in water by EC. Double-headed arrows represent possible bending vibra
tions in proposed species. 
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when F- is added to the above system formation of more ≡ CaF − OH and 
≡ CaF sites compared to ≡ MgF − OH species is evident as the spectra of 
Fig. 7. F and Fig. 7. H are quite similar to each other. The XRD and XPS 
analyses confirm CaF2, MgF2 and AlF3.3H2O phases in the EC sludge 
resulted by different feed waters. Commitment fluoride and hardness 
removal mechanism by EC is shown in Fig. 8. 

4. Conclusions 

The chemical nature of the solution matrix exerts significantly on 
hardness and fluoride removal efficiency by electrocoagulation. A 
maximum of 83% hardness and 99% fluoride removal efficiencies were 
achieved for simulated water within 28 min, consuming a total of 
0.69 kW h m− 3 energy. The presence of residual Al3+ in treated water 
limits its direct consumption. Further research is necessary to identify 
aluminium species in water after simultaneous hardness and fluoride 
removal by electrocoagulation. 
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