

Future trends in Big Data

Outline

- 1. The future of data storage
- 2. Analytics platform and machine learning
- 3. An increasing need for data scientists
- 4. Data privacy in the future
- 5. Fast data and Actionable data

Future of data storage

Exponential growth in data volume

- **328 million TB** of data created each day.
- 120 zettabytes generated in 2023
- Data volumes expected to increase over 150% by 2025
- Only **2%** of data produced in 2020 is stored until 2021.
- Data storage capacity is expected to grow 19.2% from 2020 to 2025.

Source: www.explodingtopics.com

Where is the data stored

Where is the data stored? Enterprise % • Consumer % Public cloud % 70% 60% 50% 40% 30% 20% 10% 0% 2010 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2011 2012

• Fewer data is being stored locally.

- **60%** of corporate data is stored in the cloud
- Cloud storage is expected to have a compound annual growth rate (CAGR) of 22.3%
- Data Center Storage market is expected to surpass 40 billion USD.
- By 2023, the SSD market is expected to reach a value of around 80 billion USD.

Image Source: www.itransition.com

Analytics platforms and machine learning

Global market spending for machine learning

Machine learning tops AI dollars

Data source: Venture Scanner, Statista estimates

Increasing use of

- Unsupervised ML algorithms
- Deep personalisation
- Cognitive services

More applications for

- Emotion detection
- Self-drive cars
- Space exploration
- Medical science

Image Source: www.itransition.com

Growing need for data scientists in water sector

Co-funded by the European Union

A need for data scientists

Image Source: www.itransition.com

Necessary skills in the future

- Data platforms and tools
- Programming languages
- Machine learning algorithms
- Data processing techniques
 - Building data pipelines
 - Manage ETL (Extract, Transform, Load) process
 - Data preprocessing

Data privacy in the future

Co-funded by the European Union

How does it affect data privacy

- More data in the cloud \rightarrow Less in your local hard drive
- Higher volumes of data in the shared platforms.
- A need for a higher degree of trust in our online storage resources.
- Can we store critical information online?
- How compromised are we in case of a data leak?

Policies and systems

- Stricter Data Protection Regulations
- Emergence of Privacy-Preserving Technologies
- Privacy by Design
- Data Breach Preparedness and Incident Response
- Strengthened Encryption and Security Measures
- Increased User Control

Education and awareness

- Ethical Data Practices
- Cross-Border Data Transfers
- Increased Privacy Education and Awareness
- Educate individuals, businesses, and policymakers about
 - privacy rights
 - Risks
 - best practices
- Foster a privacy-conscious culture and encourage responsible data handling

Fast and actionable data

Fast data and actionable data

• Bigdata doesn't just mean big storage volumes but also big incoming data rate.

• Processing data in batches results in a time lag and a subsequent loss of value of that data.

• Can data be processed as soon as it arrives?

• "Fast and actionable data" will replace big data in the near future.

Big data versus Fast-Actionable data

Bigdata

- Is like looking for a needle in a haystack

Characterised by 3 V's

- Massive Data Volumes
- Data generated at high Velocities
- Contains diverse Variety in the dataset.

Fast and actionable data

- Is like detecting the needle before it hits the haystack.

A subset of Big data, which also includes

- Real-time processing
- Immediate action
- Targeted relevant insights

• Most current Big data platforms can handle and store large data volumes

• However, most fall behind in analysing the information in real-time

• To build a Fast data infrastructure, we need

>An ultra-fast streaming system capable of delivering events as soon as they arrive

>A data storage capable of processing each item as fast as it arrives

Important feature of fast data systems

- Redundancy and scalability benefits
- Lean in-memory storage
- High per-node throughput
- Processing at ingestion time
- Handle concurrency and data divergence problems
- Should isolate operations from processing cores

What does the future look like?

Democratization of data

The increasing accessibility and availability of data to a broader range of individuals and organizations. It empowers people with the ability to access, analyze, and utilize data for various purposes. Active developments are underway in the areas of

- Open Data Initiative
- Data Visualization and Analytics Tools
- Crowdsourced and User-Generated Data
- Data Sharing Partnerships and Collaborations
- Personal Data Ownership and Control:

No-code solution (NCS tools)

Why are NCS tools gaining popularity?

- Not everyone has to know how to code
- Enabling domain knowledge experts to generate value from big data
- Allow users to create applications and automate processes without writing code.

Future trends and new developments

- NCS platforms may expand further by integrating more complex and feature-rich applications.
- As the adoption of no-code platforms grows, there will be an increase in industry-specific templates and solutions
- Greater focus will be on enhancing collaboration and sharing capabilities
- Mobile app development is expected to become more accessible through no-code solutions.

Standardizing definitions for data

DIGIWATE

- Can there be a universally accepted definition of data types?
- From puddle \rightarrow pond \rightarrow lake \rightarrow ocean
- Structured, unstructured, or hybrid?
- How to effectively classify data?
- Data types tailored to the water sector.

Data mesh

Data Mesh is an emerging approach to data architecture that aims to decentralise data ownership, improve data quality, and foster data-driven collaboration across organisations. A relatively new concept, with developments underway in the areas of

- Interoperability and collaboration across multiple stakeholders in the Data Mesh.
- Data security and privacy in Data Mesh architectures.
- Emergence of dedicated tools and platforms that can support Data Mesh architecture.
- Specialized roles, such as data product managers, data domain owners, and data stewards, will be established to oversee the development, operation, and governance of data products and domains.
- Possibility to integrate Data Mesh into existing technologies and architectures (such as Kubernetes, microservices, and serverless computing)

Data Mesh will continue to grow, facilitating knowledge sharing, case studies, and lessons learned

Thank you

